Advanced Course

Distributed Systems

Weaker Consistency

 Models \& CRDTs

Course Topics

- Intro to Distributed Systems
- Fundamental Abstractions and Failure Detectors
- Reliable and Causal Order Broadcast
- Distributed Shared Memory CRDTs
- Consensus (Paxos)
- Replicated State Machines (OmniPaxos, Raft, Zab etc.)
- Time Abstractions and Interval Clocks (Spanner etc.)
- Consistent Snapshotting (Stream Data Management)
- Distributed ACID Transactions (Cloud DBs)

Have we Achieved the Goal?

Replicated Data Services

Replicated Data Services

\checkmark scalability \quad fault-tolerance ? single server illusion?

Properties of Replicated Data Services

"The degree at which data has a "Single-Copy View"

Properties of Replicated Data Services

no coordination	++	\#allowed states	--
(relaxed ordering of ops)		high coordination	
(strict ordering of ops)			

No Availability
= System is

Availability

Availability = Every
correct node responds
unresponsive

Id2203

NETWORK PARTITION = SACRIFICE

Consistency

Program waits for
state to synchronize

BREWER'S THEOREM (CAP)

- Network partitions are often unavoidable! (e.g., mobile computing).
"Choose either Consistency or Availability to tolerate Partitions"
- Problem: Linearizability requires quorum-based communication. If quorum not reachable during partitioning system gets stuck.

Availability During Partitioning

Is it Really a Binary Option?

Consistency

Consistency

Availability

This sounds like a really bad deal...

Drilling Down Consistency

Weaker Consistency Models

- Certain consistency conditions do not require coordination.
. Note: Coordination-free does not imply Synchronization-free.
- We have already seen a few examples:
- Causal/FIFO Reliable Broadcast
- Eventual Consistency

EvENTUAL CONSISTENCY

- State updates can be issued at any replica/correct process.
- All updates are disseminated via BEB, RB,...
- Each correct process that receives all updates should deterministically converge to the same state.
- Eventually every correct process should receive all updates...
- Problem: When can a process know it has received all updates??

STRONG EVENTUAL CONSISTENCY

- Same as before, updates can be issued at any process/replica.
- SEC Property: If two correct processes p_{1}, p_{2} receive the exact same set of updates, then p_{1}. state $=p_{2}$. state .
- Main Idea: If state operations are commutative and processes exchange information, eventually they converge to an identical view.

EXAMPLE

- Processes can either add or subtract (+, - are commutative) to a shared register.
- Assume reliable broadcast. Each process updates + broadcasts each operation

EXAMPLE \#2

- Processes can either multiply or add to a shared register.
- Assume reliable broadcast. Each process updates + broadcasts each operation

non-commutative operations do not converge!

EXAMPLE \#3

- Processes can either add or subtract (+, - are commutative) to a shared register.
- Each process updates + broadcasts each operation. Assume unreliable communication.

if unreliable communication, operations need to be idempotent!

Convergent Data Types

- Data structures that implement strong eventual consistency.
- CRDTs : Conflict-Free Replicated Data Types.
- Two Equivalent Types: Operation-Based and State-Based
- Assumptions:
- Arbitrary Network Partitions
- Fail-Recovery: Process Memory Survives Crashes
- Asynchronous Process Model
- Required type of broadcast differs across CRDT types.

RECAP: POSET

- Partial Order: binary relation \leq on a set T, written $<T, \leq>$
- Reflexive: $a \leq a$ for $a \in T$
- Antisymmetric: $(a \leq b \wedge b \leq a) \Rightarrow(a=b)$ for $a, b \in T$
- Transitive: $(a \leq b \wedge b \leq c) \Rightarrow(a \leq c)$, for $a, b, c \in T$
- Example:
- Vector Clocks $\left.<\left\langle\mathbb{Z}^{+}, \ldots, \mathbb{Z}^{+}\right\rangle, \leq\right\rangle$

RECAP: POSET

ID2203

Join Semilattice

1) A partially order set T.
2) A Join is a Least Upper Bound (infimum) \sqcup of any subset $M \subseteq T$

- (1)+(2) yield a join-semilattice with the following properties
- Commutativity: $t \sqcup t^{\prime}=t^{\prime} \sqcup t$
- Idempotency: $t \sqcup t=t$
- Associativity: $\left(t_{1} \sqcup t_{2}\right) \sqcup t_{3}=t_{1} \sqcup\left(t_{2} \sqcup t_{3}\right)$

set M

supremum = least upper bounds of M

EXAMPLES

Least Upper Bound: First common ancestor in a family/biological tree

EXAMPLES

$(2,1,1) \sqcup(2,1,1)=$

EXAMPLES

$(2,1,1) \sqcup(2,1,1)=(2,1,1)$

ID2203 ${ }^{\text {KTH }}$

EXAMPLES

$(1,1,1) \sqcup(2,2,1)=$

EXAMPLES

$$
(1,1,1) \sqcup(2,2,1)=(2,2,1)
$$

EXAMPLES

$(2,1,1) \sqcup(1,2,2)=$

EXAMPLES

$$
(2,1,1) \sqcup(1,2,2)=(2,2,2)
$$

\sqcup always moves up the lattice
\sqcup can join concurrent values

More Example

Given poset $\left(\mathbb{Z}^{+}, \leq\right)$and $\sqcup=\max$

- Commutativity: $10 \sqcup 1000=1000 \sqcup 10=1000$
- Idempotency: $9000 \sqcup 9000=9000$
- Associativity: $(1 \sqcup 120) \sqcup 40=1 \sqcup(120 \sqcup 40)=120$

More Examples

Given set of greek letter combinations and $\sqcup=\cup$

- Commutativity: $\{\lambda\} \sqcup\{\kappa, \omega\}=\{\kappa, \omega\} \sqcup\{\lambda\}=\{\kappa, \lambda, \omega\}$
- Idempotency: $\{\omega\} \sqcup\{\omega\}=\{\omega\}$
- Associativity: $(\{\kappa\} \sqcup\{\lambda\}) \sqcup\{\pi\}=\{\kappa\} \sqcup(\{\lambda\} \sqcup\{\pi\})=\{\kappa, \lambda, \pi\}$

State-Based (CvRDTs)

- Each process maintains a triple $\left(\left(s_{1}, \ldots, s_{n}\right), u, q\right)$:
- $\left(s_{1}, \ldots, s_{n}\right)$ is the configuration on n replicas, $s_{i} \in S$ (semilattice)
- Operations
- Read q: $S \rightarrow V$ is a query function
- Update $u_{i}: \mathrm{S} \rightarrow \mathrm{S}$ is a mutator such that $\mathrm{s} \sqsubseteq u_{i}(\mathrm{~s})$ (monotonic)
- Merge (\sqcup) $: S \times S \rightarrow S$, where \sqcup is a least upper bound for S
- Usage: Processes exchange (beb broadcast) configurations and merge them

Grow-OnLy Counter

- Configuration
- $\left(s_{1}, \ldots, s_{n}\right)$: increments by each process, initially $(0, \ldots, 0)$
- Operations
- Read: $\mathbf{q}=$ Sum of all elements, e.g., $q((1,2,1))=4$
- Update: u_{i} : Increments $i^{\text {th }}$ counter, e.g., inc $_{1}((1,2,1))=(1,3,1)$
- Merge (\sqcup) : Max of each element, e.g., $(1,2) \sqcup(5,1)=(5,2)$

Grow-Only Counter Example

do we need to disseminate configuration on each inc?

Grow-Only Counter Example

Periodic broadcasts by each process still converge to same state...

CvCRDTs - Observations

- From the example we can derive that
- Synchronization can be tuned without violating correctness for State-Based CRDTs (eventual convergence is guaranteed).
- Any form of reliable broadcast suffices (Order is not important)
- Causal Order is derived in configurations (through merge)
-What if we want to support more state operations?
- e.g., counter that supports decrements? (\sqcup only goes \uparrow, not \downarrow)

Up-Down Counter

- Configuration
- $\left(\left(\uparrow_{1}, \ldots, \uparrow_{n}\right),\left(\downarrow_{1}, \ldots, \downarrow_{n}\right)\right)$ num of increments and decrements / process
- Operations
- Read: $\mathbf{q}=\sum_{i=0}^{n} \uparrow_{i}-\downarrow_{i}$, e.g., $\mathbf{q}((1,2,1),(1,0,1))=2$
- Update u_{i} :
- $u^{\text {inc. }}$: increments \uparrow_{i}, e.g., $u_{1}^{\text {inc }}((1,2,1),(0,0,0))=((1,3,1),(0,0,0))$
- $u^{\text {dec }}$ increments \downarrow_{i}, e.g., $u_{1}^{\text {dec }}((1,3,1),(0,0,0))=((1,3,1),(0,1,0))$
- Merge (\sqcup) : Max for both vectors, e.g., $((1,2),(1,1)) \sqcup((5,0),(2,1))=((5,2),(2,1))$

Up-Down Counter Example

OR-SET

- Assume we want to support the set "add" and "remove" ops on a CvRDT (e.g., shopping cart)
- Both add and remove ops should cause monotonic updates. They are not commutative.
- Configuration : $\left(\left(o_{i},\{a d d\},\{r e m\}\right) \in O\right)$ - o: object, add: addition tags, rem: removal tags

- Operations

- $\operatorname{Read}(e)$: exists(e) : if $\exists(e,\{a d d\},\{r e m o v e\})$ then return add-remove $\neq\{ \}$
- Update u_{i} :
- $u^{\text {add }}(\mathrm{e}):(\mathrm{e},\{\operatorname{add}\} \cup \mathrm{x},\{$ remove $\}), \mathrm{x}:$ unique identifier
- $u^{\text {rem }}(e):(e,\{a d d\},\{r e m o v e\} \cup\{a d d\})$
- Merge (ப) : Union of each triplets, e.g., (apple, $\{a, b\},\{a\}) \sqcup($ apple $,\{c\},\{ \})=($ apple, $\{a, b, c\},\{a\})$

OR-SET EXAMPLE

CvCRDTs - Observations

- From the examples we can derive that
- Synchronization can be tuned without violating correctness for State-Based CRDTs (eventual convergence is guaranteed).
- Any form of reliable broadcast suffices (Order is not important)
- Causality is is preserved in configurations
- Configuration space can get large: e.g., O (|operations| |P|)
- CvRDTs send a lot of redundant state. Cant we send just operations?

A DEEPER LOOK

- Why do CvRDTs work again? They always converge to the same state despite arbitrary broadcast delivery order.
- Remember any two updates u_{1}, u_{2} are distributed events. They can be either:
- 1. Causally Dependent Updates: Encapsulated in the S (semilattice)
- if $u_{1} \rightarrow u_{2}$ then $u_{1}(s) \leq u_{2}(s)$ - since \mathbf{u} is monotonic
- 2. Concurrent Updates:
- \sqcup of S (Join-Semilattice) is commutative
- Can we provide the same properties without the overly inflated states?

A DEEPER LOOK

- Why do CvRDTs work again? They always converge to the same state despite arbitrary broadcast delivery order.
- Remember any two updates u_{1}, u_{2} are distributed events. They can be either:
- 1. Causally Dependent Updates: Encapsulated in the S (semilattice)
- if $u_{1} \rightarrow u_{2}$ th $\mu_{1}(s) \leq u_{2}(s) \quad$ use causal-order broadcast
- 2. Concurrent Updătes:
- \sqcup of S (Join-Semilatt is con use commutative update function
- Can we provide the same properties without the overly inflated states?

Operation-Based CmRDTs

- Each process maintains a triple (S, u, q): (simplified version)
- Operations
- Read q: $\mathrm{S} \longrightarrow \mathrm{V}$ is a query function
- Update $u_{i}: \mathrm{S} \longrightarrow \mathrm{S}$ is a mutator. u is commutative
- Usage:
- on update request u, generate u' : crb_broadcast u'.
- upon receiving u', apply u'.

OR-Set Example (CmRDT)

CmRDTs

- For trivially commutative problems (e.g., +, - operators) then we might not necessarily need causal order broadcast.
- Less States and IO
- More restrictions in programming model (commutativity)
- Less Flexible to work with

OTHER APPROACHES

- MRDTs : Mergeable Replicated Data Types. Log all local update history in a log. Perform conflict resolution on the update history (similar to gitmerge)
- OT : Operational Transformation. It is used in Google Docs. Many different approaches, most are not valid. Google Docs re-write concurrent operations based on a set of rules. Also relies on central server to do conflict resolution and relay updates.
- Known Applications (CRDTs) : Apple Notes, Fluid (Microsoft), Redis, Riak DB (used by RiotGames-league of legends), Akka Framework

W ait a Minute

- What if we want to disallow counter going below a threshold? e.g., 1 Not Solvable under Strong Eventual Consistency

Managing Global Invariants and Limited Resources requires Coordination (Consensus)

KTH-2023

SPECIAL THANKS

- For the inspiring examples and notes from
- Peter Van-Roy (UCL)
- Martin Kleppmann (TUM)

