
ID2203

KTH-2023

ADVANCED COURSE

Distributed Systems

Weaker Consistency

Models & CRDTs

Paris Carbone

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

HAVE WE ACHIEVED THE GOAL?

3

X 0
Y 10

Registers / Key-Values

Data /

Key-Value Store

r(X) X:=2 r(Y)

A B C

Shared Mem: Processes/Servers have

direct memory access (no messages)

Distributed Shared Mem (DSM): Processes/Servers

have indirect memory access (using messages)

DSM

DSM DSM

r(X)

X:=2

r(Y)

KTH-2023

ID2203

REPLICATED DATA SERVICES

4

requests

failures

KTH-2023

ID2203

REPLICATED DATA SERVICES

5

✓scalability ✓fault-tolerance ? single server illusion ?

=
data

copies

KTH-2023

ID2203

PROPERTIES OF REPLICATED DATA SERVICES

6

“The degree at which data has a “Single-Copy View”

Strong Consistency =
Linearizable,Atomic etc

No Consistency
= x n copies Consistency

no coordination

(relaxed ordering of ops)

high coordination

(strict ordering of ops)

#allowed states - - ++

KTH-2023

ID2203

PROPERTIES OF REPLICATED DATA SERVICES

7

no coordination

(relaxed ordering of ops)

high coordination

(strict ordering of ops)

Availability = Every
correct node responds
to requests

No Availability

= System is
unresponsive

Availability

Strong Consistency =
Linearizable,Atomic etc

No Consistency
= x n copies Consistency

#allowed states - - ++

KTH-2023

ID2203

NETWORK PARTITION = SACRIFICE

8

Consistency

Availability
Program responds
but state is
inconsistent

Program waits for

state to synchronize

Choose one

KTH-2023

ID2203

BREWER'S THEOREM (CAP)

• Network partitions are often unavoidable! (e.g., mobile computing).

“Choose either Consistency or Availability to tolerate Partitions”

• Problem: Linearizability requires quorum-based communication. If

quorum not reachable during partitioning system gets stuck.

9

KTH-2023

ID2203

AVAILABILITY DURING PARTITIONING

10

old/invalid states

synced states

majority

requests

KTH-2023

ID2203

IS IT REALLY A BINARY OPTION?

Consistency

Availability

Consistency

Availability

vs

This sounds like a really bad deal…

KTH-2023

ID2203

DRILLING DOWN CONSISTENCY

Consistency

Atomically

Agreed

Order

Linearizable Order Total Order
No
OrderO

pe
ra

tio
na

l
G

ua
ra

nt
ee

s

Atomic/
Regular
RW

Registers

Paxos

Raft

Zab

OmniPaxos

2-Phase

Commit

1

?

Quorum
(N/2 + 1) N1

Coordination-Free

M
in

im
um

Pa

rt
iti

on

R
eq

ui
re

m
en

t
Partial SynchronyAsynchrony still ok…

KTH-2023

ID2203

WEAKER CONSISTENCY MODELS

• Certain consistency conditions do not require coordination.

• Note: Coordination-free does not imply Synchronization-free.

13

• We have already seen a few examples:

• Causal/FIFO Reliable Broadcast

• Eventual Consistency

KTH-2023

ID2203

EVENTUAL CONSISTENCY

• State updates can be issued at any replica/correct process.

• All updates are disseminated via BEB, RB,…

• Each correct process that receives all updates should
deterministically converge to the same state.

• Eventually every correct process should receive all updates…

• Problem: When can a process know it has received all updates??

14

KTH-2023

ID2203

STRONG EVENTUAL CONSISTENCY

• Same as before, updates can be issued at any process/replica.

• SEC Property: If two correct processes receive the exact same

set of updates, then .

• Main Idea: If state operations are commutative and processes

exchange information, eventually they converge to an identical
view.

p1, p2

p1 . state = p2 . state

15

KTH-2023

ID2203

EXAMPLE

• Processes can either add or subtract (+, - are commutative) to a shared register.

• Assume reliable broadcast. Each process updates + broadcasts each operation

16

P1

P2

P3

0

0

0

+3
3

+3

+3
3

3

-1
2

+1
4

-1

-1

+1

+1

3

2 3

3

KTH-2023

ID2203

EXAMPLE #2
• Processes can either multiply or add to a shared register.

• Assume reliable broadcast. Each process updates + broadcasts each operation

17

P1

P2

P3

0

0

0

+3
3

+3

+3
3

3

*2
6

+4
7

*2

*2

+4

+4

10

6 10

14

non-commutative operations do not converge!

KTH-2023

ID2203

EXAMPLE #3
• Processes can either add or subtract (+, - are commutative) to a shared register.

• Each process updates + broadcasts each operation. Assume unreliable communication.

18

P1

P2

P3

0

0

0

+3
3

+3

+3
3

3

-1
2

+1
4

-1

+1 +13

2

4 +1 5

if unreliable communication, operations need to be idempotent!

KTH-2023

ID2203

CONVERGENT DATA TYPES

• Data structures that implement strong eventual consistency.

• CRDTs : Conflict-Free Replicated Data Types.

• Two Equivalent Types: Operation-Based and State-Based

• Assumptions:

• Arbitrary Network Partitions

• Fail-Recovery: Process Memory Survives Crashes

• Asynchronous Process Model

• Required type of broadcast differs across CRDT types.

19

KTH-2023

ID2203

RECAP: POSET

• Partial Order: binary relation on a set T, written

• Reflexive: for

• Antisymmetric: for

• Transitive: , for

• Example:

• Vector Clocks

≤ < T, ≤ >

a ≤ a a ∈ T
(a ≤ b ∧ b ≤ a) ⇒ (a = b) a, b ∈ T

(a ≤ b ∧ b ≤ c) ⇒ (a ≤ c) a, b, c ∈ T

< ⟨ℤ+, …, ℤ+⟩, ≤ >

20

KTH-2023

ID2203

RECAP: POSET

21

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

≤

KTH-2023

ID2203

JOIN SEMILATTICE

22

1)A partially order set T .

2) A Join is a Least Upper Bound (infimum) of any subset

• (1)+(2) yield a join-semilattice with the following properties

• Commutativity:

• Idempotency:

• Associativity:

⊔ M ⊆ T

t ⊔ t′￼= t′￼⊔ t
t ⊔ t = t
(t1 ⊔ t2) ⊔ t3 = t1 ⊔ (t2 ⊔ t3)

KTH-2023

ID2203

EXAMPLES

23

Least Upper Bound: First common ancestor in a family/biological tree

KTH-2023

ID2203

EXAMPLES

24

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

(2,1,1) ⊔ (2,1,1) =

KTH-2023

ID2203

EXAMPLES

25

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

(2,1,1) ⊔ (2,1,1) = (2,1,1)

KTH-2023

ID2203

EXAMPLES

26

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

(1,1,1) ⊔ (2,2,1) =

KTH-2023

ID2203

EXAMPLES

27

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

(1,1,1) ⊔ (2,2,1) = (2,2,1)

KTH-2023

ID2203

EXAMPLES

28

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

(2,1,1) ⊔ (1,2,2) =

KTH-2023

ID2203

EXAMPLES

29

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (2,1,2) (1,2,2)

(2,2,2)

(2,1,1) ⊔ (1,2,2) = (2,2,2) always moves up the lattice⊔

 can join concurrent values⊔

Observations

KTH-2023

ID2203

MORE EXAMPLE

30

Given poset and = max

• Commutativity:

• Idempotency:

• Associativity:

(ℤ+, ≤) ⊔

10 ⊔ 1000 = 1000 ⊔ 10 = 1000
9000 ⊔ 9000 = 9000
(1 ⊔ 120) ⊔ 40 = 1 ⊔ (120 ⊔ 40) = 120

KTH-2023

ID2203

MORE EXAMPLES

31

Given set of greek letter combinations and =

• Commutativity:

• Idempotency:

• Associativity:

⊔ ∪

{λ} ⊔ {κ, ω} = {κ, ω} ⊔ {λ} = {κ, λ, ω}
{ω} ⊔ {ω} = {ω}
({κ} ⊔ {λ}) ⊔ {π} = {κ} ⊔ ({λ} ⊔ {π}) = {κ, λ, π}

KTH-2023

ID2203

STATE-BASED (CVRDTS)
• Each process maintains a triple :

• is the configuration on n replicas, (semilattice)

• Operations

• Read q: S⟶V is a query function

• Update : S⟶S is a mutator such that s ⊑ (s) (monotonic)

• Merge () : , where is a least upper bound for S

• Usage: Processes exchange (beb broadcast) configurations and merge them

((s1, …, sn), u, q)

(s1, …, sn) si ∈ S

ui ui

⊔ S × S → S ⊔

32

KTH-2023

ID2203

GROW-ONLY COUNTER

• Configuration

• : increments by each process, initially ()

• Operations

• Read: q = Sum of all elements, e.g., q((1,2,1)) = 4

• Update: : Increments counter, e.g., = (1,3,1)

• Merge () : Max of each element, e.g., (1,2) (5,1) = (5,2)

(s1, …, sn) 0,…,0

ui ith inc1((1,2,1))

⊔ ⊔

33

KTH-2023

ID2203

GROW-ONLY COUNTER EXAMPLE

34

P1

P2

P3

(0,0,0)

(0,0,0)

(0,0,0)

u1
(1,0,0)

⊔

⊔
(1,0,0)

(1,0,0)

u2
(1,1,0)

u3
(1,0,1)

⊔

⊔

⊔

⊔

(1,1,1)

(1,1,0) (1,1,1)

(1,1,1)

do we need to disseminate configuration on each inc?

3

q=3

q=3

q=3

KTH-2023

ID2203

GROW-ONLY COUNTER EXAMPLE

35

P1

P2

P3

(0,0,0)

(0,0,0)

(0,0,0)

u1
(1,0,0)

u2
(0,1,0)

u3
(0,0,1)

⊔

⊔

⊔

⊔

(0,3,3)

(3,3,0) (3,3,3)

(0,3,3)

(3,3,3)

(3,3,3)

⊔

⊔

Periodic broadcasts by each process still converge to same state…

q=9

q=9

q=9u2
(0,2,0)

u3
(0,0,2)

u1
(2,0,0)

u1
(3,0,0)

u2
(0,3,0)

u3
(0,0,3)

KTH-2023

ID2203

CVCRDTS - OBSERVATIONS

• From the example we can derive that

• Synchronization can be tuned without violating correctness for

State-Based CRDTs (eventual convergence is guaranteed).

• Any form of reliable broadcast suffices (Order is not important)

• Causal Order is derived in configurations (through merge)

• What if we want to support more state operations?

• e.g., counter that supports decrements? (only goes , not)⊔ ↑ ↓

36

KTH-2023

ID2203

UP-DOWN COUNTER
• Configuration

• num of increments and decrements / process

• Operations

•
Read: q = , e.g., q((1,2,1),(1,0,1)) = 2

• Update :

• : increments , e.g.,

• : increments , e.g.,

• Merge () : Max for both vectors, e.g., ((1,2),(1,1)) ((5,0),(2,1)) = ((5,2),(2,1))

((↑1 , …, ↑n), (↓1 , …, ↓n))

n

∑
i=0

↑i − ↓i

ui

uinc ↑i uinc
1 ((1,2,1), (0,0,0)) = ((1,3,1), (0,0,0))

udec ↓i udec
1 ((1,3,1), (0,0,0)) = ((1,3,1), (0,1,0))

⊔ ⊔

37

KTH-2023

ID2203

UP-DOWN COUNTER EXAMPLE

38

P1

P2

P3

(0,0,0)
↑1 (1,0,0)

(0,0,0)

⊔

⊔

(1,0,0)

(1,0,0)

(0,0,0)

(0,0,0)

↓2 (1,0,0)

↓3 (1,0,0)

(0,1,0)

(0,0,1)

⊔

⊔

⊔

⊔

(1,0,0)

(2,0,0) (2,0,0)

(1,0,0)

(0,1,1) (0,1,1)

(0,1,1)

(0,1,1)

(2,0,0)
(0,1,1)

q=0

q=0

q=0

(0,0,0)

(0,0,0)
(0,0,0)

(0,0,0)
(0,0,0)

↑1 (2,0,0)
(0,0,0)

⊔

⊔

(2,0,0)

(2,0,0)

(0,1,1)

(0,1,1)

KTH-2023

ID2203

OR-SET
• Assume we want to support the set “add” and “remove” ops on a CvRDT (e.g., shopping cart)

• Both add and remove ops should cause monotonic updates. They are not commutative.

• Configuration : - o: object, add: addition tags, rem: removal tags

• Operations

• Read(e) : exists(e) : if (e,{add},{remove}) then return add-remove { }

• Update :

• (e): (e,{add} x, {remove}) , x : unique identifier

• (e): (e,{add}, {remove} {add})

• Merge () : Union of each triplets, e.g., (apple,{a,b},{a}) (apple,{c},{}) = (apple,{a,b,c},{a})

((oi, {add}, {rem}) ∈ O)

∃ ≠

ui

uadd ∪

urem ∪

⊔ ⊔

39

KTH-2023

ID2203

OR-SET EXAMPLE

40

P1

P2

P3

{ }

⊔

⊔

{a,{x},{}}

{a,{x},{}}
-a

{a,{x},{x}}

-a
{a,{x},{x}}

{ }

{ }

+b
{a,{x},{}}
{b,{y},{}}

⊔

⊔

{a,{x},{x}}

{a,{x},{x}}
{b,{y},{}}

{b,{y},{}}

+a
{a,{x},{}} ⊔

⊔

⊔

⊔

{a,{x},{x}}

{a,{x},{x}}

{a,{x},{x}

{b,{y},{}} {b,{y},{}}
{a,{x},{x}} q(a) exists!

q(a)exists

q(a) exists

⊔

⊔

{a,{x,z},{x}}

{a,{x,z},{x}}
{b,{y},{}}

{b,{y},{}}

+a {a,{x,z},{x}}
{b,{y},{}}

KTH-2023

ID2203

CVCRDTS - OBSERVATIONS

• From the examples we can derive that

• Synchronization can be tuned without violating correctness for
State-Based CRDTs (eventual convergence is guaranteed).

• Any form of reliable broadcast suffices (Order is not important)

• Causality is is preserved in configurations

• Configuration space can get large: e.g., O(|operations| |P|)

• CvRDTs send a lot of redundant state. Cant we send just operations?

41

KTH-2023

ID2203

A DEEPER LOOK

• Why do CvRDTs work again? They always converge to the same state
despite arbitrary broadcast delivery order.

• Remember any two updates are distributed events. They can be
either:

• 1. Causally Dependent Updates: Encapsulated in the S (semilattice)

• if then - since u is monotonic

• 2. Concurrent Updates:

• of S (Join-Semilattice) is commutative

• Can we provide the same properties without the overly inflated states?

u1, u2

u1 → u2 u1(s) ≤ u2(s)

⊔

42

KTH-2023

ID2203

• Why do CvRDTs work again? They always converge to the same state
despite arbitrary broadcast delivery order.

• Remember any two updates are distributed events. They can be
either:

• 1. Causally Dependent Updates: Encapsulated in the S (semilattice)

• if then - since u is monotonic

• 2. Concurrent Updates:

• of S (Join-Semilattice) is commutative

• Can we provide the same properties without the overly inflated states?

u1, u2

u1 → u2 u1(s) ≤ u2(s)

⊔

A DEEPER LOOK

43

use causal-order broadcast

use commutative update function

KTH-2023

ID2203

OPERATION-BASED CMRDTS

• Each process maintains a triple : (simplified version)

• Operations

• Read q: S⟶V is a query function

• Update : S⟶S is a mutator. u is commutative

• Usage:

• on update request u, generate u’ : crb_broadcast u’.

• upon receiving u’, apply u’.

(S, u, q)

ui

44

KTH-2023

ID2203

OR-SET EXAMPLE (CMRDT)

45

P1

P2

P3

{ }

{ }

{ }

{ }

-a

{ }

{ }

{ }
{ }ay

{ }ax, ay

+a
{ }ax

+a

{ }ax, ay

{ }ay

{ }ax, ay
{ }bz

{ }bz

+b

{ }bz

KTH-2023

ID2203

CMRDTS

• For trivially commutative problems (e.g., +, - operators) then we
might not necessarily need causal order broadcast.

• Less States and IO

• More restrictions in programming model (commutativity)

• Less Flexible to work with

46

KTH-2023

ID2203

OTHER APPROACHES

• MRDTs : Mergeable Replicated Data Types. Log all local update history

in a log. Perform conflict resolution on the update history (similar to git-
merge)

• OT : Operational Transformation. It is used in Google Docs. Many

different approaches, most are not valid. Google Docs re-write
concurrent operations based on a set of rules. Also relies on central server
to do conflict resolution and relay updates.

• Known Applications (CRDTs) : Apple Notes, Fluid (Microsoft), Redis,

Riak DB (used by RiotGames-league of legends), Akka Framework

47

KTH-2023

ID2203

WAIT A MINUTE

• What if we want to disallow counter going below a threshold? e.g., 1

48

P1

P2

P3

0

0

0

+3
3

+3

+3
3

3

-1
2

+1
4

-1

+1 +13

2

4 +1 5

Managing Global Invariants and Limited Resources requires Coordination (Consensus)

Not Solvable under Strong Eventual Consistency

KTH-2023

ID2203

SPECIAL THANKS

• For the inspiring examples and notes from

• Peter Van-Roy (UCL)

• Martin Kleppmann (TUM)

49

