dip2203

KTH-2023

ADVANCED COURSE

Distributed Systems

4944337
3
33838553

Weaker Consistency
Models & CRDTs |

Paris Carbone

COURSE TOPICS

» Intro to Distributed Systems

» Fundamental Abstractions and Failure Detectors

» Reliable and Causal Order Broadcast

» Distributed Shared Memory

» Consensus (Paxos)

» Replicated State Machines (OmniPaxos, Raft, Zab etc.)
» Time Abstractions and Interval Clocks (Spanner etc.)

» Consistent Snapshotting (Stream Data Management)
» Distributed ACID Transactions (Cloud DBs)

HAVE WE ACHIEVED THE GOAL?

Registers / Key-Values

Data / X 0
Key-Value Store Y 10

r(X) X:=2

A

Shared Mem: Processes/Servers have

direct memory access (no messages)

REPLICATED DATA SERVICES

4, failures

requests

REPLICATED DATA SERVICES

v scalability v fault-tolerance ? single server illusion ?

BEvEREE-&
RNRAL

PROPERTIES OF REPLICATED DATA SERVICES

no coordination ++ #allowed states - - high coordination

(relaxed ordering of ops) (G (sict ordering of ops)
Strong Consistency =

No Consistency]
= X N copies ConS|stency Linearizable,Atomic etc

“The degree at which data has a “Single-Copy View”

D1p2203
atp

FKTHY

KTH-2023

PROPERTIES OF REPLICATED DATA SERVICES

no coordination ++ #allowed states - - high coordination

(relaxed ordering of ops) (G (sict ordering of ops)
Strong Consistency =

No Consistency]
= X N copies ConS|stency Linearizable,Atomic etc

No Availability] i Availability = Every
= System is VETEL 1Y correct node responds

unresponsive to requests S

FKTHY

KTH-2023

NETWORK PARTITION = SACRIFICE
state to synchronize

CLICELTIE >

Program responds

Availability but state is

inconsistent

BREWER'S THEOREM (CAP)

 Network partitions are often unavoidable! (e.g., mobile computing).

“Choose either Consistency or Availability to tolerate Partitions”

. Problem: Linearizability requires quorum-based communication. If

quorum not reachable during partitioning system gets stuck.

D1p2203
atp

FKTHY

KTH-2023

AVAILABILITY DURING PARTITIONING

majority

requests

@ old/invalid states
a synced states

ISIT REALLY A BINARY OPTION?

S

\Y
Availability Availability

This sounds like a really bad deal...

Operational
Guarantees

Minimum
Partition
Requirement

DRILLING DOWN CONSISTENCY

\Coordination-Free

Asynchrony still ok...

Partial Synchrony

Registers (le + 1) OmniPaxos N

+ Atomically
. Linearizable Order : Total Order . Agreed

: Order

+ Atomic/ Paxos: 2-Phase

+ Regular Raft: Commit

' RW Quorum Zab'

D1p2203

KTH-2023

WEAKER CONSISTENCY MODELS

- Certain consistency conditions do not require coordination.

. Note: Coordination-free does not imply Synchronization-free.

- We have already seen a few examples:
o Causal/FIFO Reliable Broadcast

 Eventual Consistency

EVENTUAL CONSISTENCY

State updates can be issued at any replica/correct process.

All updates are disseminated via BEB, RB,...

Each correct process that receives all updates should
deterministically converge to the same state.

Eventually every correct process should receive all updates...

Problem: When can a process know it has received all updates??

D1p2203

STRONG EVENTUAL CONSISTENCY

o Same as before, updates can be issued at any process/replica.

. SEC Property: If two correct processes p;, p, receive the exact same

set of updates, then p, . state = p, . state.

. Main Idea: If state operations are commutative and processes

exchange information, eventually they converge to an identical
View.

D1p2203
atp

FKTHY

KTH-2023

EXAMPLE

« Processes can either add or subtract (+, - are commutative) to a shared register.

« Assume reliable broadcast. Each process updates + broadcasts each operation

+3
0 /Y 3 12 #1 3
p, 1LY !
-1
2 +33/N2 +13
+1
p. 0 3 /Y4 3
. +3 1

D1p2203
atp

FKTHY

KTH-2023

EXAMPLE #2

. Processes can either multiply or add to a shared register.

« Assume reliable broadcast. Each process updates + broadcasts each operation

+3
0 3 *2 6 +
p, 1L @

PZO 3/}16 +4 10
+3

p, O 3/},7 /@

non-commutative operations do not converge!

D1p2203

KTH-2023

EXAMPLE #3

« Processes can either add or subtract (+, - are commutative) to a shared register.

. Each process updates + broadcasts each operation. Assume unreliable communication.

+3
0 3 -
p L a

D1p2203

if unreliable communication, operations need to be idempotent!

KTH-2023

CONVERGENT DATA TYPES

Data structures that implement strong eventual consistency.
CRDTs : Conflict-Free Replicated Data Types.
Two Equivalent Types: Operation-Based and State-Based

Assumptions:

Arbitrary Network Partitions

. Fail-Recovery: Process Memory Survives Crashes

Asynchronous Process Model

Required type of broadcast differs across CRDT types. g

RECAP: POSET

. Partial Order: binary relation < on a set T, written < 7, < >

« Reflexive:a < aforae T
« Antisymmetric: (a < bAb<La)=> (a=Db)fora,b e T
e Transitive:(a <bAb<c)=>(a<c),fora,b,ceT

- Example:
 Vector Clocks < (Z%,...,Z%), <>

RECAP: POSET

JOIN SEMILATTICE

1)A partially order set T .

2) A Join is a Least Upper Bound (infimum) L of any subset M C T
e (1)+(2) yield a join-semilattice with the following properties

- Commutativity: t Ut =¢ LIt

 Idempotency: LIt =t

- Associativity: (f; Ut) Uz =1 U5 U L)

set M

>

7 O~ S

supremum = least upper bounds of M
upper bound

EXAMPLES

Least Upper Bound: First common ancestor in a family/biological tree

Echinoderms

Protostomes

Amphibians

Reptiles

Mammals

Earth Birth
-
Todey %6 M 22 50 44 st o ew ™o Millions of Years Ago - e e W W | Todyy
ANl ihe o s sy e the e Sving esaches o i e shown et g, bt cely i f hoe ht e gene ot e show. Fcwrple: Disacurs - extirct € i o e

KTH-2023

EXAMPLES

(2,2,2)

PALN

221 (2,1,2) 122

\/T

(1.1,1) /

2,1,Hu(2,1,1) =

EXAMPLES

(2,2,2)
221 21;\ 122
(2,1,1) 121 112

111 /

2,1,Hu@,1,1) =(2,1,1)

EXAMPLES

(1,L1,Hu(2,2,1) =

(2,2,2)
2, I ;\ (1,2,2)

(2,1,1) (1,2,1><;,I,2)
(1,1,1)

EXAMPLES
(2.2,2)
(2,2,1) (2.1,2) (1,2,2)

f2107 (1.2 (1,1,2)
..ll—.-.—l—.-.—l—;‘:’l“ . |

‘e
-
Lo,
.
.
]
]
)

(17171) I—I (27271) = (27271) 12203

EXAMPLES

(2,2,2)

]

221) (@12

(1,1,1) /

2,1,1)u(1,2,2) =

29

o Yo

. >

2,1,1)u(1,2,2) = (2,2,2)

EXAMPLES

‘e
‘e
.......
....

(1,1,2)

Observations

LI always moves up the lattice

D1p2203
atp

ioi {xry
LI can join concurrent values ks

KTH-2023

MORE EXAMPLE

Given poset (Z*, <) and L = max

« Commutativity: 10 1 1000 = 1000 1 10 = 1000
» Idempotency: 9000 LI 9000 = 9000
e Associativity: (1 L 120) 140 =101 (1200140) = 120

MORE EXAMPLES

Given set of greek letter combinations and LI = U

« Commutativity: {A} U {x,w} ={x,o} U {l} = {4, ®}
 Idempotency: {w} U {w} = {w}
o Associativity: ({x} U {A}D) U {x} ={x}u{{A} u{x}) = {k A, 7}

32

STATE-BASED (CVRDTS)

e Each process maintains a triple ((sy, ..., s,), U4, q):
e (8,...,58,) is the configuration on n replicas, s; € S (semilattice)

e Operations

« Read q: S—V is a query function
e Update u;: S—S is a mutator such that s C u,(s) (monotonic)
e Merge (Ll): S XS — S, where Ll is a least upper bound for S

o Usage: Processes exchange (beb broadcast) configurations and merge them

D1p2203

aip

FKTHY

KTH-2023

GROW-ONLY COUNTER

* Configuration

e (8,...,5,) : increments by each process, initially (0,...,0)

e Operations
e Read: q = Sum of all elements, e.g., q((1,2,1)) = 4
o Update: i, : Increments i counter, e.g., inc,((1,2,1)) = (1,3,1)

e Merge (L) : Max of each element, e.g., (1,2)LI(5,1) = (5,2)

34

l/tl
(0,0,0) (1,0,0) (1,1,0)
L
P, /N -
0,0,0) (1,0,0) (1,1 o/
P, W u

GROW-ONLY COUNTER EXAMPLE

q=3

do we need to disseminate configuration on each inc?

D1p2203

KTH-2023

85

GROW-ONLY COUNTER EXAMPLE

U U

Uy
(0,0,0) (1,0,0) (2,0,0) (3,0,0)
p /N /N /N

1

U U

(0,0,0) u2(0,1,0) (0,2,0) (0,3,0)
Py N NN

D1p2203

Periodic broadcasts by each process still converge to same state...

KTH-2023

CVCRDTS - OBSERVATIONS

« From the example we can derive that

» Synchronization can be tuned without violating correctness for
State-Based CRDTs (eventual convergence is guaranteed).

Any form of reliable broadcast suffices (Order is not important)

Causal Order is derived in configurations (through merge)

What if we want to support more state operations?

* e.g., counter that supports decrements? (LI only goes 1, not |)

37

UP-DOWN COUNTER

* Configuration

e ((1y,-.»1,).(ly,.... |,)) num of increments and decrements / process

e Operations

° Read:q= Z Ti — li) e-g-; q((lyzyl))(lyoyl)) =2
i=0
o Update u;:

e 4" increments 1,,eg., u{”c((l,Z,l), (0,0,0)) = ((1,3,1),(0,0,0))
e u%‘: increments l;,eg., uldec((l,3,1), (0,0,0)) = ((1,3,1), (0,1,0))

e Merge (LI) : Max for both vectors, e.g., ((1,2),(1,1))u((5,0),(2,1)) = ((5,2),(2,1))

D1p2203
atp

FKTHY

KTH-2023

UP-DOWN COUNTER EXAMPLE

Yp—

e =) 5o
co co co
So So So

KTH-2023

38

39

OR-SET

* Assume we want to support the set “add” and “remove” ops on a CvRDT (e.g., shopping cart)

* Both add and remove ops should cause monotonic updates. They are not commutative.

» Configuration : ((0;, {add}, {rem}) € O) - o: object, add: addition tags, rem: removal tags

e Operations

o Read(e): exists(e) : if 3 (e,{add},{remove}) then return add-remove # { }
o Update u;:

o 1 (e): (e,{add} U x, {remove}) , x : unique identifier

o 1" (e): (e,{add}, {removelU {add})

e Merge (L) : Union of each triplets, e.g., (apple,ia,b},{a})Li(apple,ic},i}) = (apple,ia,b,c},ia})

D1p2203
atp

FKTHY

KTH-2023

40

OR-SET EXAMPLE

+a *b @000}
a, Xy,
m (.0 /\l .01}

@O0 {a{00)
|00 | |0

a h i '
+ W g(a) exists!
/\1'

-d
{a.{xh{ o {8 {xh{d}

{a.4xh 0} '
by) q(a)exists

" {2, ({0}
L L
{a.{X},{}}/-N{a,{x},{x}} {a,{xh) s q(a) exists
L L L L

D1p2203
(./‘\

KTH-2023

CVCRDTS - OBSERVATIONS

« From the examples we can derive that

» Synchronization can be tuned without violating correctness for
State-Based CRDT's (eventual convergence is guaranteed).

Any form of reliable broadcast suffices (Order is not important)

Causality is is preserved in configurations

Configuration space can get large: e.g., O(|operations| |P|)

CvRDTs send a lot of redundant state. Cant we send just operations?

D1p2203

42

A DEEPER LOOK

« Why do CvRDTs work again? They always converge to the same state
despite arbitrary broadcast delivery order.

« Remember any two updates u,, u, are distributed events. They can be
either:

« 1. Causally Dependent Updates: Encapsulated in the S (semilattice)

. if u; = u, then u,(s) < u,(s) - since u is monotonic

« 2. Concurrent Updates:

. L of S (Join-Semilattice) is commutative

« Can we provide the same properties without the overly inflated states?

D1p2203

KTH-2023

43

A DEEPER LOOK

« Why do CvRDTs work again? They always converge to the same state
despite arbitrary broadcast delivery order.

« Remember any two updates u,, u, are distributed events. They can be
either:

« 1. Causally Dependent Updates: Encapsulated in the S (semilattice)
1(8) < uy(s) (use causal-order broadcast)

o 2. Concurrent ates:

. Lof S (Join- Semllattxs cor(use commutative update function)

« Can we provide the same properties without the overly inflated states?

e ifu - ut

D1p2203

KTH-2023

44

OPERATION-BASED CMRDTS

e Each process maintains a triple (S, u, ¢): (simplified version)

e Operations

e Read q: S—V is a query function
e Update ;: S—S is a mutator. u is commutative
o Usage:

* on update request u, generate u : crb_broadcast u.

® upon receiving u, apply u’.

D1p2203

45

OR-SET EXAMPLE (CMRDT)

D1p2203

KTH-2023

46

CMRDTS

For trivially commutative problems (e.g., +, - operators) then we
might not necessarily need causal order broadcast.

Less States and 10
More restrictions in programming model (commutativity)

Less Flexible to work with

D1p2203
atp

FKTHY

KTH-2023

OTHER APPROACHES

. MRDTs : Mergeable Replicated Data Types. Log all local update history

in a log. Perform conflict resolution on the update history (similar to git-
merge)

. OT : Operational Transformation. It is used in Google Docs. Many

different approaches, most are not valid. Google Docs re-write
concurrent operations based on a set of rules. Also relies on central server
to do conflict resolution and relay updates.

. Known Applications (CRDTs) : Apple Notes, Fluid (Microsoft), Redis,
Riak DB (used by RiotGames-league of legends), Akka Framework

D1p2203

WAIT A MINUTE

« What if we want to disallow counter going below a threshold? e.g., 1

Not Solvable under Strong Eventual Consistency

Managing Global Invariants and Limited Resources requires Coordination (Consensus)

+3
0 3 -1 2
P1 m
-1
on 3/N2/ +13+14 415
+3
+1 dip2203
P, 0 3 /\4

KTH-2023

SPECIAL THANKS

« For the inspiring examples and notes from

o Peter Van-Roy (UCL)
 Martin Kleppmann (TUM)

