
ID2203

KTH-2023

Advanced Course

Distributed Systems

Distributed

Shared Memory

Paris Carbone

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

SHARED VS DISTRIBUTED SHARED “MEMORY”

3

X 0
Y 10

Registers / Key-Values

Data /

Key-Value Store

r(X) X:=2 r(Y)

A B C

Shared Mem: Processes/Servers have

direct memory access (no messages)

Distributed Shared Mem (DSM): Processes/Servers

have indirect memory access (using messages)

DSM

DSM DSM

r(X)

X:=2

r(Y)

KTH-2023

ID2203

DISTRIBUTED SHARED MEMORY

• Provide shared-memory as-a-service (simulated on message passing).

• Foundation of most replicated “key-value stores” today.

• Algorithms suffice for simple read/write operations.

• A register represents each memory location

• Registers aka objects

• Processes can read/write to a set of registers

• More complex operations can be composed (FIFO-queue…)

4

KTH-2023

ID2203

SYSTEM MODEL

• Asynchronous system with n processes that
communicate by message-passing

• Processes are automata with states and transitions as
described by algorithm

Network

p1 …p2 pn

5

KTH-2023

ID2203

READ/WRITE REGISTER

• RW-registers have 2 operations

• read(r)⇒v

• Value of Xr was read to be v

• write(r, v)

• Update register Xr to value v

• Sometimes omit Xr

• Specification with respect to one register

6

KTH-2023

ID2203

DSM I/F

DISTRIBUTED SHARED MEMORY

• DSM implements:

• A set of read/write registers {x
r

}
 r ∈ {1..m}

• Operations:

• write(r, v) – update value of register x

r

 to v

• read(r) – return current value of register x
r

Network

p1 …p2 pn

7

DSM DSM DSM

KTH-2023

ID2203

1 OPERATION = 2 EVENTS

p1
wr(5) rd ⇒0

responses

invocations

8

P1

DSM

trace

DSM

w-inv
1
(r, 5)

w-res
1

r-inv
1
(r)

r-res
1
(0)

Operations Defined by Invocations and Responses

KTH-2023

ID2203

BASIC ASSUMPTIONS

• Processes are sequential (no pipelining of operations)

• invocation, response, invocation, response,…

• I.e. do one operation at a time

• Registers values of some type with some initial value of that type

• Registers are of the integer type

• Values are integers, initially zero

9

KTH-2023

ID2203

TRACES (HISTORIES) OF EXECUTIONS

• Every trace consists of a sequences of events

• r-invi(r)

• Read invocation by process pi on register Xr

• r-resi(v)

• Response with value v to read by process pi

• w-invi(r,v)

• Write invocation by process pi on register Xr with value v

• w-resi

• Response (confirmation) to write by process pi

10

KTH-2023

ID2203

TRACE PROPERTIES

• Trace is well-formed

• First event of every process is an invocation

• Each process alternates between invocations and responses

• Trace is sequential if

• 𝑥-inv by i immediately followed by a corresponding 𝑥-res at i

• 𝑥-res by i immediately follows a corresponding 𝑥-inv by i

• i.e. no concurrency, read x by p1, write y by p5, …

• Trace T is legal

• T is sequential

• Each read to Xr returns last value written to register Xr

11

KTH-2023

ID2203

OPERATION PROPERTIES
• An operation O of a trace T is

• complete if both invocation & response occurred in T

• pending if O invoked, but no response

• A trace T is complete if

• Every operation is complete

• Otherwise T is partial

• op1 precedes op2 in a trace T if (denoted <T)

• Response of op1 precedes invocation of op2 in T

• op1 and op2 are concurrent if neither precedes the other
12

KTH-2023

ID2203

EXAMPLE

p1

w-inv(x,1)

p2

x, y = 0

13

w-res

w-inv(y,1) w-res

r-inv(y) r-res(1)

r-inv(x) r-res(1)

w-inv1(x,1) w-inv2(y,1) w-res1 w-res2 r-inv1(y) r-inv2(x) r-res1(1) r-res2(1)

wr(x,1)

wr(y,1)

r(y)=>1

r(x)=>1

ID2203

KTH-2023

Regular Register Algorithms

KTH-2023

ID2203

TERMINOLOGY

• (1,N)-algorithm

• 1 designated writer, multiple readers

• (M,N)-algorithm

• Multiple writers, multiple readers

15

KTH-2023

ID2203

REGULAR REGISTER (1, N)
Termination

• Each read/write operation issued by a correct process
eventually completes.

Validity

• Read returns last value written if

• Not concurrent with another write, and

• Not concurrent with a failed write

• Otherwise may return last or concurrent “value”
16

KTH-2023

ID2203

EXAMPLE

Regular?

Not a single storage illusion!

p1
wr(5)

p2

p3
rd⇒5

rd⇒5

rd⇒0

rd⇒0 rd⇒5

yes

0

0

0

17

KTH-2023

ID2203

CENTRALIZED ALGORITHM

Designate one process as leader

• to read

• Ask leader for latest value

• to write(v)

• Update leader’s value to v

• Problem?

• Does not work if leader crashes

18

KTH-2023

ID2203

STRAWMAN REGULAR ALGORITHM

• Intuitively: make an algorithm in which

• A read just reads local value

• A write writes to all processes

• to write(v)

• Update local value to v

• Broadcast v to all (each node locally updates)

• Return

• to read

• Return local value

• Problem?

P2

P1

W(5)

R1⇒0 R2⇒0 R3⇒5

19

KTH-2023

ID2203

FAIL-STOP READ-ONE WRITE-ALL (1,N)

• Bogus algorithm modified

• Use perfect FD P

• Fail-stop model

• to write(v)

• Update local value to v

• Broadcast v to all

•⏳Wait for ACK from all correct processes

• Return

• to read

• Return local value
20

KTH-2023

ID2203

CORRECTNESS

Assume we use Beb-broadcast, Perfect links and P

Validity

1. No concurrent write with the read operations

● Assume p invokes a read, and v last written value

● At time of read by p, the write is complete (accuracy of P) and p has v stored locally

2. Read is concurrent with write of value v, v’ the value prior to v

● Each process store v’ before write(v) is invoked

● When a read is invoked each process either stores v or v’

● As the write is concurrent, either value is correct to read

21

KTH-2023

ID2203

READ-ONE WRITE-ALL (1,N) #2

Intuitively Postpone write responses

P2

P1

W(5)

R1⇒0 R2⇒0 R3⇒5

P2

P1

W(5)

R1⇒0 R2⇒0 R3⇒5

22

KTH-2023

ID2203

SUPPORTING WEAKER MODELS

Main idea

Quorum principle (ex: majority)

Always write to and read from a majority of processes

At least one correct process knows most recent value

Ex: majority(9)=5

WRITE(v) READ→v

23

KTH-2023

ID2203

QUORUM PRINCIPLE

• Divide the system into quorums

• Any two quorums should intersect (overlap)

• E.g., read R, write W, s.t. R+W>N

• Majority Quorum

• Pro: tolerate up to ⎡N/2⎤ -1 crashes

• Con: Have to read/write ⎣N/2⎦ +1 values

24

KTH-2023

ID2203

TIMESTAMP-VALUE PAIRS

• Each process stores the values of all registers

• Value of register r

• is timestamp-value pair, tvp=(ts, v)

• ts is a sequence number initialized to zero at the writer and

incremented at each write

• ts determine which value is more recent

• Initially r is (ts, val) = (0, ⊥) at all processes

• Each process

• Stores the value of register r with max timestamp for each register r

25

KTH-2023

ID2203

PHASES

Each operation is executed into phases

A phase run by p

i
 consists of:

p
i
 beb-broadcasts a request

p
j
 receives request, processes it, and sends response

p
i
 waits for responses from a majority before the phase ends

p1

p2

p3

phase
begins phase ends

request response

26

KTH-2023

ID2203

WRITE MAJORITY
• Writer executing write(r, v) operation

• ts++ (increment current sequence number)

• p

i
 forms tvp=(ts, v), where ts is current sequence number

• p
i
 starts an update phase by sending update request with register id r and

timestamp-value pair (ts, v)

• p
j
 updates r = max(r, (ts, v)) and responds with ACK

• p
i
 completes write when update phase ends

write invoked write completes

update request update response
p1

p2

p3
27

KTH-2023

ID2203

READ MAJORITY

Process p
i
 executing read(r) operation

p
i
 starts query phase, sends query request with id r

p
j
 responds to the query with (ts, v)j

When query phase ends, p
i
 picks max (ts, v)

j
 received

read invoked

query request

read completes

query response

p1

p2

p3

28

KTH-2023

ID2203

ILLUSTRATING MAJORITY VOTING ALGORITHM
Avoiding old writes overwriting new write

p
j
 updates r = max(r, (ts, v)) and responds with ACK

p1

wr(2)

p2

p3

rd⇒5

wr(5)

p4

p5
29

KTH-2023

ID2203

CORRECTNESS VALIDITY

• No concurrent write with the read operations

• Assume q invokes a read, and (ts,v) last written value by p. ts is
highest time stamp.

• At time of read-inv by q, a majority has (ts,v)

• q gets at least one response with (ts,v) and returns v

• Read is concurrent with a write with value (ts,v)

• (ts-1,v’) the value prior to (ts,v)

• Majority of processes store (ts-1,v’) before write(v) is invoked

• The query phase of the read returns either (ts-1,v’) or (ts,v)

30

KTH-2023

ID2203

PERFORMANCE AND RESILIENCE
• Read-one write-all (1,N) algorithm

• Time complexity (write)

• 2 communication steps (broadcast and Ack)

• Message complexity: O(N) messages

• Resilience: faulty processes f = N-1

• Majority voting (1,N) algorithm

• Time complexity (write and read)

• 2 communication steps (one round trip)

• Message complexity: O(N) messages

• Resilience: faulty processes f < ⌈N/2⌉
31

ID2203

KTH-2023

Towards single storage illusion...

ID2203

KTH-2023

Atomic/Linearizability vs. 

Sequential Consistency

KTH-2023

ID2203

SEQUENTIAL CONSISTENCY

“the result of any execution is the same as if the
operations of all the processes were executed in
some sequential order, and the operations of
each individual process in this sequence are in
the order specified by its program”

34

KTH-2023

ID2203

LINEARIZABILITY/ATOMIC CONSISTENCY

“the result of any execution is the same as if the
operations of all the processes were executed in
some sequential order, and the operations in this
sequence are in the global time order of
operations (occurs bet. invocation and response)”

35

KTH-2023

ID2203

SAFETY: CONSISTENCY INFORMALLY

• Sequential Consistency: only allow executions
whose results appear as if there is a single
system image and “local time” is obeyed.

• Linearizability/Atomicity: only allow executions
whose results appear as if there is a single
system image and “global time” is obeyed.

36

KTH-2023

ID2203

SEQUENTIAL CONSISTENCY FORMALLY (SC)
• Trace S is legal

• S is sequential

• Each read to Xr returns last value written to register Xr

• Given a trace T, T | (view of process pi)

• Subsequence of T with only 𝑥- and 𝑥- of

• Traces S and T are equivalent (written as S ≃ T)

• if ∀ : S| = T|

• SC(T) as property on traces T:

• SC(T) if there exists legal history S such that S≃T

pi

invi resi pi

pi pi pi

37

KTH-2023

ID2203

LINEARIZABILITY (LIN) FORMALLY

• LIN is a consistency condition similar to SC

• LIN(T) requires that there exists legal Trace S:

• S is equivalent to T,

• If o

1
 <

T
 o

2
 then it must also be that o

1
 <

S
 o

2

• LIN is stronger than SC: LIN(T) ⇒ SC(T)

38

KTH-2023

ID2203

CONSIDERING FAILURES

• No observable failures in complete executions

• Linearizability (or SC) for partial executions (failures)

• A partial trace T is linearizable (or SC) if T is modified to T’ s.t.

• Every pending operation is completed by

• Removing the invocation of the operation, or

• Adding response to the operation

• T’ is linearizable (SC)

39

KTH-2023

ID2203

SC EXAMPLE 1

Regular execution

Sequential consistency disallows such E’s

p1
wt(x,5)

p2

p3

rd(x)⇒0rd(x)⇒5

40

not legal in SC

KTH-2023

ID2203

SC EXAMPLE 2

Regular execution

Sequential consistency allows such T’s

p1
wr(x,5)

p2

p3

rd(x)⇒0

rd(x)⇒5 operation precedence is not observable in SC

 (but relevant for Atomicity)

41

KTH-2023

ID2203

REGULARITY VS SC

Sequentially consistent execution

Regular consistency disallows such trace

p1
wt(x,5)

p2

p3

rd(x)⇒0

rd(x)⇒5

42

KTH-2023

ID2203

ATOMICITY EXAMPLE 1

• Regular execution

• Atomicity/Linearizability disallows such E’s

• No single storage could behave that way

p1
wr(x,5)

p2

p3

operation precedence observable on same process

43

rd(x)⇒5 rd(x)⇒0

KTH-2023

ID2203

ATOMICITY EXAMPLE 2

• Regular execution

• Atomicity/Linearizability disallows such E’s

p1

p2

p3

44

rd(x)⇒0

rd(x)⇒5 operation precedence is

observable between process

wr(x,5)

KTH-2023

ID2203

CONSISTENCY HIERARCHY

Atomicity / Linearizability

Regular Sequential

45

KTH-2023

ID2203

COMPOSITIONALITY

• For a trace T

• T | xr Subsequence of T with only 𝑥-inv and 𝑥-res of register

x

r

• For multi-registers, we would like to have modular design and verification of
the algorithm that implements certain consistency model

• This is possible if we can design the algorithm for each register in isolation

• Possible with compositional consistency condition

• Consistency condition CC(T) is compositional (local) iff

• for all registers x
r
: CC(T | x

r
)) ⇔ CC(T)

46

KTH-2023

ID2203

COMPOSITIONALITY

• Possible with compositional consistency condition

• Consistency condition CC(H) is compositional iff

• (∀x
r

: CC(H|x
r

)) ⇔ CC(H)

• Linearizability is compositional

• for all registers x

r

: LIN(T|x
r

) ⇔ LIN(T)

• Unfortunately, SC is not compositional

• Even though we can show SC(T|x
r

) for each register, SC(T) may not hold

47

KTH-2023

ID2203

EXAMPLE LINEARIZABLE TRACE

p1

p2

48

wr(y,1)

rd(y)⇒ 1

rd(x)⇒ 1

wr(y,0)

wr(x,1)wr(x,0)

wr(x,0) wr(y,0) wr(x,1)wr(y,1) rd(y)⇒ 1 rd(x)⇒ 1T :

KTH-2023

ID2203

EXAMPLE SEQUENTIALLY CONSISTENT TRACE

p1

p2

49

wr(y,1)

rd(y)⇒ 1

rd(x)⇒ 0

wr(y,0)

wr(x,1)wr(x,0)

wr(x,0) wr(y,0) wr(x,1)wr(y,1) rd(y)⇒ 1rd(x)⇒ 0H :
Legal History

KTH-2023

ID2203

NOT SEQUENTIALLY CONSISTENT TRACE

p1

p2

50

wr(y,1)

rd(y)⇒ 0

rd(x)⇒ 0

wr(y,0)

wr(x,1)wr(x,0)

wr(x,0)

wr(y,0)

wr(x,1)

wr(y,1)

rd(y)⇒ 0

rd(x)⇒ 0

T |p1 :

 :T |p2

No legal history is
possible

KTH-2023

ID2203

SEQUENTIAL CONSISTENT IS NOT COMPOSITIONAL

p1

p2

51

wr(y,1)

rd(y)⇒ 0

rd(x)⇒ 0

wr(y,0)

wr(x,1)wr(x,0)

(x,0)wr1

(y,0)wr2

(x,1)wr1

(y,1)wr2(y)⇒ 0rd1

(x)⇒ 0rd2T |x :

T |y :

KTH-2023

ID2203

LIVENESS: PROGRESS
• Liveness requirements

• Wait-free

• Informally:

• Every correct node should “make progress”

• (no deadlocks, no live-locks, no starvation)

• Lock-free/non-blocking

• Informally:

• At least one correct node should “make progress”

• (no deadlocks, no live-locks, maybe starvation)

• Obstruction free/solo-termination

• Informally:

• if a single node executes without interference (contention) it makes progress

• (no deadlocks, maybe live-locks, maybe starvation)52

ID2203

KTH-2023

Atomic/Linearizable Registers

Algorithms

KTH-2023

ID2203

ATOMIC/LINEARIZABLE REGISTER
• Termination (Wait-freedom)

• If node is correct, each read and write op eventually completes

• Linearization Points

• Read ops appear as if immediately happened at all nodes at

• time between invocation and response

• Write ops appear as if immediately happened at all nodes at

• time between invocation and response

• Failed ops appear as

• completed at every node, XOR

• never occurred at any node

54

KTH-2023

ID2203

• Validity

• Read returns last value written if

• Not concurrent with another write

• Not concurrent with a failed

operation

• Otherwise may return last or

concurrent “value”

• Ordering

• If read→r1 precedes read→r2 then write(r1)
precedes write(r2)

ALTERNATIVE DEFINITION

Read ops appear as immediately happened
at all nodes at

time between invocation and response

Write ops appear as immediately
happened at all nodes at

time between invocation and response

Failed ops appear as

completed at every node, XOR

never happened at any node

Linearization points Ordering (only (1,N))

55

=

KTH-2023

ID2203

EXAMPLE

Atomic?

No, not possible to find linearization points

P3

P2
wr(x, 5) wr(x, 6)

rd(x)→6
P1

rd(x)→5

56

KTH-2023

ID2203

EXAMPLE 2

P3

P2
wr(x,5) wr(x,6)

rd(x)→6
P1

rd(x)→6

Linearization points

Single System Image

57

KTH-2023

ID2203

EXAMPLE 2

P3

P2

rd(x)→5
P1

rd(x)→6

Linearization points

Single System Image

58

wr(x,6)wr(x,5)

KTH-2023

ID2203

EXAMPLE 3 SEQUENTIAL CONSISTENCY

P3

P2

P1

Sequential

Execution

59

wr(x,6)wr(x,5)

rd(x)→6

rd(x)→5

ID2203

KTH-2023

(1,N) Algorithm

[Fail-Silent]

KTH-2023

ID2203

PHASES

A phase run by p
i
 consists of:

p
i
 beb-broadcasts a request

p
j
 receives request, processes it, and sends response

p
i
 waits for responses from a majority before the phase ends

p1

p2

p3

phase
begins phase ends

request response

61

KTH-2023

ID2203

WRITE OPERATION MAJORITY VOTING

Writer executing write(r, v) operation

ts++ (increment current sequence number)

p

i

 forms tvp=(ts, v), where ts is current sequence number

p
i

 starts an update phase by sending update request with register id r and ts pair (ts, v)

p
j

 updates r = max(r, (ts, v)) and responds with ACK

p
i

 completes write when update phase ends

write invoked write completes

update request update response
p1

p2

p3

62

KTH-2023

ID2203

READ OPERATION MAJORITY VOTING

Process p
i

 executing read(r) operation

p

i

 starts query phase, sends query request with id r

p
j

 responds to the query with (ts, v)j

When query phase ends, p
i

 picks max (ts, v)
j
 received

read invoked

query request

read completes

query response

p1

p2

p3

63

KTH-2023

ID2203

MAJORITY VOTING ALGORITHM (1,N)

Assume majority of correct processes

Register values have a sequence number (seq#)

No FD

to write(v)

ts++

Broadcast v and ts to all

if newer ts:

Receiver update to (ts, v)

Receiver sends ACK

Wait for ACK from majority of nodes

Return

to read

Broadcast read request to all

Receiver respond with local value v and ts

Wait and save values from majority of nodes

Return value with highest ts

64

The update phase with (v,ts)

The read query phase

KTH-2023

ID2203

REGULAR BUT NOT ATOMIC

Problem with majority voting

Ex: majority(5)=3

P2

P1
wr(5) wr(6)

rd→6

P3

P4

acks

sn=2

rd→5

P5

sn=1

sn=1

sn=1

sn=1

sn=1

sn=2

ack

ack
sn=2

65

KTH-2023

ID2203

READ IMPOSE

P2

P1
wr(5) wr(6)

rd→6

P3

P4

acks

sn=2

rd→6

P5

sn=1

sn=1

sn=1

sn=1

sn=1

sn=2

ack

ack
sn=2

Main idea

Read-impose (update)

When reading, also do an update before responding

66

KTH-2023

ID2203

READ-IMPOSE WRITE MAJORITY (1,N)

to read

Broadcast read request to all

Receiver respond with local value v and ts

Wait and save values from majority of nodes

Perform an update phase with highest (ts, v)

Return value v

67

query phase

● Optimization

● if all responses in the query phase have the same ts do not perform the
update phase, just return

● A majority has the latest value written

KTH-2023

ID2203

WHY DOES IT WORK? WHY READ-IMPOSE

• A read rd(x)⇒r1 makes an update with r1

• Any succeeding read must at least see r1

• Causality used to enforce atomicity

Validity

❑ Read returns last value written if

Not concurrent with another write

Not concurrent with a failed operation

❑ Otherwise may return last or
concurrent “value”

Ordering

❑ If a read→r1 precedes read→r2

❑ Then write(r1) precedes write(r2)

68

ID2203

KTH-2023

(N,N) Algorithm

[Fail-Silent]

KTH-2023

ID2203

ATOMIC REGISTER (MULTIPLE WRITERS)

• Read-Impose Majority Voting

• Multiple writers might have non-synchronized time stamp ts

• Example:

• The latter wr(x, 6) is ignored because old timestamp

P3

P2

wr(x,5) ts=30

wr(x,6) ts=28
P1

ack

ack ack

70

KTH-2023

ID2203

ATOMIC REGISTERS (N,N) 1/2

• Read-impose write-consult-majority (N,N)

• Before writing, read from majority to get last ts

• Do a query phase to get the latest timestamp before

the update phase

• Problem

• Two concurrent writes with same timestamp?

• Just compare process identifier, break ties!

• Initially the value of register Xr of pi is ((0,i),⊥)

71

KTH-2023

ID2203

WRITE OPERATION — QUERY PHASE
• Process p

i

 executing operation wr(Xr, v)

• p
i

 starts query phase, sends query request with id r

• p
j

 responds to the query with current timestamp (ts, pid)r

• When query phase ends, p
i

 picks max (ts, pid’)
r
 received

• p
i

 starts an update phase by sending update request with register id r and timestamp-value pair ((ts+1, i), v)

• p
j

 updates r = max(r, ((ts, pid), v)) and responds with ACK

• p
i

 completes write when update phase ends

write invoked

query request

update request

write completes

query response
update response

p1

p2

p3

72

KTH-2023

ID2203

ATOMIC REGISTERS (N,N) 2/2
• Read-impose write-consult-majority (N,N)

• update phase

• Before writing, read from majority to get last timestamp

• Observe in all phases, any process pi sends ACK message even if receives
update request with old timestamp

• Because of multiple writers

• Example:

• Slow P1 does update(x, (5), waits for acks

• Fast P2 writes(6), receives acks from majority

• P1 does not get enough acks, as nodes ignore its write(5)

• P1 stalls

pi

Wait-free: Every correct process should “make progress”

 (no deadlocks, no live-locks, no starvation)

73

KTH-2023

ID2203

ATOMIC REGISTER (N,N) SUMMARY

• For atomic register

• A write to complete requires 2 round-trips of messages

• One for the timestamp (query phase)

• One for broadcast-ACK (update phase)

• A read to complete requires 2 round-trips of messages is

• One for read (query phase)

• One for impose if necessary (update phase)

74

ID2203

KTH-2023

(N,N) algorithm

Proof of linearizability

KTH-2023

ID2203

LINEARIZABILITY (LIN)

• LIN(T) requires that there exists legal history S:

• S is equivalent to T,

• If o

1
 <

T
 o

2
 then it must also be that o

1
 <

S
 o

2

• LIN is compositional: (∀x
r
: LIN(T|x

r
)) ⇔ LIN(T)

• We focus on arbitrary register Xr and proof LIN(T|x
r
)

76

KTH-2023

ID2203

 LEGAL SEQUENTIAL ORDER

• Timestamp of operation o, ts(o), is timestamp used in o’s update
phase of the write and read operations

• Construct S from T | x
r

 in timestamp order:

1. Order writes ow according to their (unique) timestamp (ts,i)

2. Order each read or immediately after write with same time stamp (ts, i)

• For reads with same ts, order them by increasing invocation order in the (real
time) trace

• S is legal by construction

• S is sequential and read returns last value written

77

KTH-2023

ID2203

COMPLETING THE PROOF

We must show that, for each execution, and
for each register xr, LIN(T | xr) holds

• Requires that there exists legal history S s.t.

• S is equivalent to T|xr,

• S preserves order of non-overlapping ops in T|xr

78

KTH-2023

ID2203

EQUIVALENCE

➡S preserves non-overlapping order as T|xr

• S and T|xr are equivalent

• They contain same events

• (T|xr)|pi contains non-overlapping operations

• (T|xr)|pi = S|pi

• Hence, LIN(T|xr) for any register xr, which implies LIN(T)

79

KTH-2023

ID2203

PRESERVING NON-OVERLAPPING ORDER

• Must show that S preserves the order of non-
overlapping ops in T|xr = T’

• If o1 <T o2 then it must also be that o1 <S o2

• res(o1) <T’ inv(o2) ⇒ res(o1) <s inv(o2)

80

KTH-2023

ID2203

O1 AND O2 ARE WRITE OPERATIONS

• ow1 <H’ ow2 ⇒ ow1 <s ow2

• res(ow1) <H’ inv(ow2) ⇒ ts(ow1) < ts(ow2)

• ow1 update phase is before ow2 query phase

• ow2 query returns a timestamp ≥ ts(ow1)

• ow2 increments the timestamp

• Hence ts(ow1) < ts(ow2) ⇒ ow1 <s ow2

81

 ow1 resquery update
p1

p2

p3 updatequery

 ow2 inv

KTH-2023

ID2203

O1 (OW) WRITE AND O2 (OR) IS READ

• ow <H’ or ⇒ ow <s or

• res(ow) <H’ inv(or) ⇒ ts(ow) ≤ ts(or)

• ow update phase is before or query phase

• or returns a timestamp ≥ ts(ow)

• Hence ow <s or

82

 ow resquery update
p1

p2

p3 updatequery

 or inv

KTH-2023

ID2203

O1 (OR) IS READ AND O2 (OW) IS WRITE

• or <H’ ow ⇒ or <s ow

• res(or) <H’ inv(ow) ⇒ ts(or) < ts(ow)

• or update phase is before ow query phase

• ow query phase returns a timestamp ≥ ts(or)

• ow increments the timestamp

• Hence ts(or) < ts(ow) ⇒ ts(or) < ts(ow)

83

 or resquery update
p1

p2

p3 updatequery

 ow inv

KTH-2023

ID2203

O1 (OR1) IS READ AND O2 (OR2) IS READ

• or1 <H’ or2 ⇒ or1 <s or2

• res(or1) <H’ inv(or2) ⇒  
ts(or1) < ts(or2) or (ts(or1) = ts(or2) and inv(or1) <H’ inv(or2))

• or1 update phase is before or2 query phase

• or2 query returns a timestamp ts(or2) ≥ ts(or1)

• if ts(or1) < ts(or2) then or1 <s or2 (at least one ow in between)

• if ts(or1) = ts(or2) then inv(or1) <H’ res(or1) <H’ inv(or2)

• Hence or1 <s or2

84

 or1 resquery update
p1

p2

p3 updatequery

 or2 inv

