
ID2203

KTH-2023

Causal Order

Reliable Broadcast

Paris Carbone

Distributed Systems

Advanced Course

KTH-2023

ID2203

COURSE TOPICS

2

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

KTH-2023

ID2203

MOTIVATION

Our Discord server went all weird today.

Max’s message caused Harald’s message,

Harald’s message caused Sonia’s message

-[Sonia] Are you sure, the lecture is not in room B?
-[Harald] Room C at Electrum
-[Max] Does anyone know where is the lecture today?

3

#id2203

But why? It is using reliable broadcast.

KTH-2023

ID2203

• Causal broadcast means
• Causality between broadcast events is preserved by

the corresponding delivery events

• If broadcast(m1) happens-before broadcast(m2), any
delivery(m2) cannot happen-before a delivery(m1)

4

INTUITIONS

KTH-2023

ID2203

CAUSALITY

C1 (FIFO order).
Some process pi broadcasts m1 before
broadcasting m2

p1

p2

p3

m1 m2 p1

p2

p3

m1 m2

5

KTH-2023

ID2203

CAUSALITY (2)

C2 (Network order).
Some process pi delivers m1 and later
broadcasts m2p1

p2

p3

m1

m2

p1

p2

p3

m1

m2

6

KTH-2023

ID2203

CAUSALITY (3)

C3 (Transitivity).
There is a message m’ such that m1 → m’
and m’ → m2

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3

7

ID2203

KTH-2023

Specification of causal reliable

broadcast

KTH-2023

ID2203

RELIABLE CAUSAL BROADCAST INTERFACE

Module:
Name: ReliableCausalOrder (rco)

Events
 Request: 〈rco Broadcast | m〉
 Indication: 〈rco Deliver | src, m〉

Property:
RB1-RB4 from regular reliable broadcast
CB: If process pi delivers m, then pi must deliver
every message causally preceding (→) m before m

9

KTH-2023

ID2203

UNIFORM RELIABLE CAUSAL BROADCAST

Module:
Name: UniformReliableCausalOrder (urco)

Events
 Request: 〈urco Broadcast | m〉
 Indication: 〈urco Deliver | src, m〉

Property:
URB1-URB4 from uniform reliable broadcast
CB: If process pi delivers m, then pi must deliver
every message causally preceding (→) m before m

10

KTH-2023

ID2203

IDEA REUSE…

Reuse RB for CB

Use reliable broadcast abstraction to
implement reliable causal broadcast

Use uniform reliable broadcast
abstraction to implement uniform causal
broadcast

11

ID2203

KTH-2023

Implementation of causal reliable

broadcast (Fail-Silent)

Perfect Link (pl)

Fail-Silent

KTH-2023

ID2203

TOWARDS AN IMPLEMENTATION

• Main idea
• Each broadcasted message carries a history
• Before delivery, ensure causality

• First algorithm
• History is set of all causally preceding messages

13

KTH-2023

ID2203

FAIL-SILENT NO-WAITING CAUSAL BROADCAST

Each message m carries ordered list of causally preceding
messages in pastm

Whenever a node rb-Delivers m

co-Deliver causally preceding messages in
pastm

co-Delivers m
Avoid duplicates using delivered

14

KTH-2023

ID2203

EXECUTION (DIRECT OVERRIDE)

p1

p2

p3

m1[]

coB(m1) coD(m1)

coD(m1)

coB(m2)

 m2 [m1]

coD(m2)

rbD(m2)

 m2 [m1]

coD(m2)

coD(m1) coD(m2)

m1[]

15

KTH-2023

ID2203

EXECUTION (INDIRECT OVERRIDE)

p1

p2

p3

m1[]

coB(m1) coD(m1)

coD(m1)

coB(m2)
 m2 [m1]

coD(m2)

rbD(m2)

 m2 [m1]

coD(m2)

coD(m1) coD(m2)

m1[]

16

KTH-2023

ID2203

FAIL-SILENT CAUSAL BROADCAST IMPL

Implements:
ReliableCausalOrderBroadcast (rco)

Uses: ReliableBroadcast (rb)
upon event 〈Init〉 do

 delivered := ∅; past := nil
upon event 〈rco Broadcast | m〉 do

trigger 〈rb Broadcast | (DATA, past, m)〉
past := append(past, (pi, m))

Append this
message to past

history

17

KTH-2023

ID2203

FAIL-SILENT CAUSAL BROADCAST IMPL (2)

upon event 〈rb Deliver | pi,(DATA, pastm , m)〉 do
 if m∉delivered then
 forall (sn,n)∈pastm do
 if n∉delivered then

 trigger 〈rco Deliver|sn, n〉
 delivered := delivered∪{n}
 past := append(past, (sn,n))
 trigger 〈rco Deliver|pi,m〉
 delivered := delivered∪{m}
 past := append(past, (pi,m))

in ascending order

deliver preceding
messages

append to history
deliver current message

append to history

18

KTH-2023

ID2203

CORRECTNESS

RB1-RB4 follow from use of RB

No creation and no duplication still
satisfied
Validity still satisfied

Some messages might be delivered earlier,
never later

Agreement directly from RB

19

KTH-2023

ID2203

CORRECTNESS

RB1-RB4 follow from use of RB
No creation and no duplication still satisfied
Validity still satisfied

Some messages might be delivered earlier, never later

20

rb-b(m1)

rb-d(p1,m1) rb-b(m2)

rb-d(p1,m1)
p1

p2

KTH-2023

ID2203

UPGRADING THE ALGORITHM

We use P
Use FIFO reliable broadcast
It is possible to trim Past

21

ID2203

KTH-2023

Fail-Silent Waiting COB Algorithm

Perfect Link (pl)

Fail-Silent

KTH-2023

ID2203

THE TRICK

• Represent past history by vector clock (VC)
• Slightly modify the VC implementation

• At process pi

• VC[i]: number of messages pi coBroadcasted & Delivered

• VC[j], j≠i: number of messages pi coDelivered from pj

23

KTH-2023

ID2203

FAIL-SILENT WAITING CAUSAL BROADCAST

• Upon CO broadcast m
• Piggyback VC and RB-broadcast m
• VCm[r] is the number messages causally preceding m from r

• Upon RB delivery of m with attached VCm

• compare VCm with local VCi

• Only deliver m once VCm ≤ VCi

• Do Not deliver if VCm > VCi or VCm ≠ VCi

24

KTH-2023

ID2203

EXECUTION

p1

p2

p3

b(m1) d(m1) b(m2) d(m2)

d(m1) d(m2)

d(m2)d(m1)

(0,0,0) (1,0,0)

m1(0,0,0)

m1(0,0,0)

(2,0,0)

m2(1,0,0)

m2(1,0,0)

(1,0,0)(0,0,0)

(0,0,0) (1,0,0) (2,0,0)

(2,0,0)

hold m2

25

KTH-2023

ID2203

FAIL-SILENT WAITING CAUSAL IMPLEMENTATION

Uses: ReliableBroadcast (rb)
upon event 〈Init〉 do

forall pi ∈ Π do VC[pi] := 0
sn := 0
Pending := ∅

upon event 〈rco Broadcast|m〉 do
W = copy(VC)
W[self] := sn
trigger 〈rbBroadcast|(DATA, W, m)〉
sn := sn + 1

send m with VC
Increase sn for next

broadcast

26

KTH-2023

ID2203

FAIL-SILENT WAITING CAUSAL IMPL. (2)

upon event 〈rbDeliver|pj, (DATA, VCm , m)〉 do
 pending := pending ∪ (pj, (DATA, VCm, m))
 deliver-pending()

proc deliver-pending()
while exists x=(sm,(DATA,VCm,m)) ∈ pending s.t. VCm ≤ VC do

pending := pending \ (sm, (DATA, VCm, m))
VC[sm] := VC[sm] + 1
trigger 〈rcoDeliver | sm, m〉

put on hold

for every message
whose VC precedes

local VC

Remove on hold
deliver and increase

local VC

27

KTH-2023

ID2203

CORRECTNESS

• Validity + Agreement
• rb-cast validity ensures that for every two correct

processes : every message (and preceding messages)
will eventually be delivered.

• Eventually VCm ≤ VCi and m is co-delived

28

KTH-2023

ID2203

CORRECTNESS

Causal Order
• For every two messages m1, m2 from q for which

it should hold that

• Each process p will deliver messages in VC order i.e., if
 then

• Each message m is not delivered until all causally preceding messages are
delivered

bcast[m1] → bcast[m2]
VCq[m1] ≤ VCq[m2]

VCq[m1] ≤ VCq[m2] coDeliverp[m1] → coDeliverp[m2]

29

ID2203

KTH-2023

Orderings of Broadcast

KTH-2023

ID2203

OTHER POSSIBLE ORDERINGS

• Other common orderings
• Single-source FIFO order

• Total order

• Causal order

31

KTH-2023

ID2203

a

EXECUTION EXAMPLE (1)

b

single-source FIFO?
totally ordered?
causally ordered?

yes
no
yes

32

KTH-2023

ID2203

EXECUTION EXAMPLE (2)

a b

single-source FIFO?
totally ordered?
causally ordered?

no
yes
no

33

KTH-2023

ID2203

EXECUTION EXAMPLE (3)

a

b

single-source FIFO?
totally ordered?
causally ordered?

yes
no
no

34

KTH-2023

ID2203

HIERARCHY OF ORDERINGS

Stronger implies weaker ordering (→)

best-effort

reliable

uniform reliable

FIFO best-effort

reliable FIFO

uniform reliable
FIFO

causal best-
effort

reliable causal

uniform reliable
causal

35

