
ID2203

KTH-2023

Distributed Systems

Advanced Course

Failure Detectors

Paris Carbone

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

MOTIVATION

• Time-related questions need to be abstracted..somehow
3

P

• Protocols in synchronous/
eventually synchronous
models require heavy use
of timers (Tideous).

consensus atomic commit

reliable
broadcast

shared
memory

“is P2 dead or is it just too slow?”

“how long should I wait to get response?”

“is P3 still the leader?”

“is there life after death?”

KTH-2023

ID2203

THE PROBLEM

4

P1
P3

P2

P4

P2

P1

P3

P4

Network

KTH-2023

ID2203

THE PROBLEM

5

P1
P3

P2

P4

P2

P1

P3

P4

Network

KTH-2023

ID2203

THE PROBLEM

6

P1
P3

P2

P4

P2

P1

P3

P4

?

Network

KTH-2023

ID2203

THE PROBLEM

7

P1
P3

P2

P4

P2

P1

P3

P4

Failure

Detector

FD

FD

FD

FD

Network

suspect P3

KTH-2023

ID2203

MOTIVATION

• Spoiler Alert: The Accuracy of a FD relates to the strength

of the underlying model.
8

P

• A Failure Detector can
substitute timing
assumptions.

consensus atomic commit

reliable
broadcast

shared
memory

FD

KTH-2023

ID2203

IDEA SKETCH

9

P2

P1

P3

P4

KTH-2023

ID2203

HEARTBEATS

10

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

suspect
not suspect

= max waiting time

= heartbeat timer

KTH-2023

ID2203

HEARTBEATS

11

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

suspect
not suspect

= max waiting time

= heartbeat timer

KTH-2023

ID2203

12

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

HEARTBEATS

suspect
not suspect

= max waiting time

= heartbeat timer

KTH-2023

ID2203

13

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

HEARTBEATS

suspect
not suspect

= max waiting time

= heartbeat timer

KTH-2023

ID2203

14

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

HEARTBEATS

suspect
not suspect

= max waiting time

= heartbeat timer

KTH-2023

ID2203

15

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

HEARTBEATS

suspect
not suspect

= max waiting time

= heartbeat timer

KTH-2023

ID2203

16

P2

P1

P3

P4

1 2 3 4

1 2 3 4

1 2 3 4

= max waiting time

HEARTBEATS

suspect
not suspect

P1 suspect P3

suspect P3

suspect P3

= heartbeat timer

KTH-2023

ID2203

IMPLEMENTATION IDEA

• Periodically exchange heartbeat messages

• Timeout based on worst case message round trip

• If timeout, then suspect process

• If received message from suspected node, revise
suspicion and increase time-out

17

KTH-2023

ID2203

COMPLETENESS AND ACCURACY

• Two important types of requirements

1. Completeness

• No False-Negatives! (i.e., should suspect at least {P2,P3})

• When do they have to be suspected?

2. Accuracy

• No False-Positives! (i.e., should not suspect {P1,P4})

• When are they allowed to be suspected?

18

P2

P1

P3

P4

KTH-2023

ID2203

• Assume the asynchronous system model

• Is it possible to achieve completeness?

• Yep, suspect all processes (i.e., {P1, P2, P3, P4})

• Is it possible to achieve accuracy?

• Yep, suspect none (i.e., { })

• How about achieving both?

• Bad News 😢 :Failure detectors are feasible only in synchronous and

partially synchronous systems
19

COMPLETENESS AND ACCURACY

P2

P1

P3

P4

KTH-2023

ID2203

REQUIREMENTS: COMPLETENESS

• Strong Completeness

• Every crashed process is eventually detected by all correct processes

• There exists a time after which…all crashed processes are detected by
all correct processes

• We only study failure detectors with this property

20

P2

P1

P3

P4

P1 P4

{P2,P3} {P2,P3}

KTH-2023

ID2203

REQUIREMENTS: COMPLETENESS

• Weak Completeness

• Every crashed process is eventually detected by some correct process

• There exists a time after which…all crashed processes are detected by some
correct processes

• Possibly detected by different correct processes

21

P2

P1

P3

P4

P1 P4

{P2} {P3}

KTH-2023

ID2203

REQUIREMENTS: ACCURACY

• Strong Accuracy

• No correct process is ever suspected

• For any process pair p and q,

• p does not suspect q, unless q has crashed

• Is it realistic?

• Strong assumption, requires synchrony

• I.e. no premature timeouts

22

KTH-2023

ID2203

REQUIREMENTS: ACCURACY

• Weak Accuracy

• There exists a correct process P which is never
suspected by any process.

• Still strong assumption

• One “well-connected” process in the system.

23

KTH-2023

ID2203

REQUIREMENTS: ACCURACY

Eventual Strong Accuracy

After some finite time the FD provides strong accuracy

Eventual Weak Accuracy

After some finite time the detector provides weak accuracy

…Prior to that, any behaviour is possible.

Quite weak assumptions

When can eventual weak accuracy be achieved?

24

ID2203

KTH-2023

Classes of Failure Detectors

KTH-2023

ID2203

THE PRACTICAL FDS

Four detectors with strong completeness

Perfect Detector (P)

Strong Accuracy

Strong Detector (S)

Weak Accuracy

Eventually Perfect Detector (◊P)

Eventual Strong Accuracy

Eventually Strong Detector (◊S)

Eventual Weak Accuracy

Synchronous Systems

Partially Synchronous
Systems

26

KTH-2023

ID2203

LESS INTERESTING FDS

Four detectors with weak completeness

Detector Q

Strong Accuracy

Weak Detector (W)

Weak Accuracy

Eventually Detector Q (◊Q)

Eventual Strong Accuracy

Eventually Weak Detector (◊W)

Eventual Weak Accuracy

Synchronous Systems

Partially Synchronous
Systems

27

ID2203

KTH-2023

Perfect Failure Detector - P

KTH-2023

ID2203

INTERFACE OF PERFECT FAILURE DETECTOR

Module:

Name: PerfectFailureDetector, instance P

Events:

Indication (out): 〈P, Crash | pi〉

Notifies that process pi has crashed

Properties:

PFD1 (strong completeness)

PFD2 (strong accuracy)

29

P

Crash pi

KTH-2023

ID2203

PROPERTIES OF P

• Properties:

• PFD1 (strong completeness)

• Eventually every process that crashes is

permanently detected by every correct process

• PFD2 (strong accuracy)

• If a node p is detected by any node, then p has crashed

• Safety or Liveness?

30

(liveness)

(safety)

15

KTH-2023

ID2203

IMPLEMENTING P IN SYNCHRONY

• Assume synchronous system

• Max transmission delay between 0 and δ time units

• Each process every γ time units

• Send <heartbeat> to all processes

• Each process waits γ+δ time units

• If did not get <heartbeat> from pi

• Detect <crash | pi>

31

pi

γ γ

δγ
pj

max delay

KTH-2023

ID2203

CORRECTNESS OF P

PFD1 (strong completeness)

• A crashed process doesn’t send
<heartbeat>

• Eventually every process will
notice the absence of <heartbeat>

pi

γ γ

δγ
pj

max delay

32

KTH-2023

ID2203

CORRECTNESS OF P

PFD2 (strong accuracy)

• Assuming local computation is negligible

• Maximum time between 2 heartbeats

• γ+δ time units

• If alive, all process will receive hb in time

• No inaccuracy

pi

γ γ

δγ
pj

max delay

33

ID2203

KTH-2023

 
Eventually Perfect Failure Detector - ♢P

KTH-2023

ID2203

INTERFACE OF ♢P
Module:

Name: EventuallyPerfectFailureDetector, instance ◊P

Events:

Indication: 〈◊P, suspect | pi〉

Notifies that process pi is suspected to have crashed

Indication: 〈◊P, restore | pi〉

Notifies that process pi is not suspected anymore

Properties:

PFD1 (strong completeness)

PFD2 (eventual strong accuracy). Eventually, no correct process
is suspected by any correct process

35

♢P

restore pisuspect pi

KTH-2023

ID2203

IMPLEMENTING ♢P
• Assume partially synchronous system

• Eventually some bounds exists

• Each process every γ time units

• Send <heartbeat> to all processes

• Each process waits T time units

• If did not get <heartbeat> from pi

• Indicate <suspect | pi> if pi is not in suspected set

• Put pi in suspected set

• If get HB from pi, and pi is in suspected

• Indicate <restore | pi> and remove pi from suspected

• Increase timeout T

36

KTH-2023

ID2203

CORRECTNESS OF ♢P

• EPFD1 (strong completeness)

• Same as before

• EPFD2 (eventual strong accuracy)

• Each time p is inaccurately suspected by a correct q

• Timeout T is increased at q

• Eventually system becomes synchronous, and T becomes larger than
the unknown bound δ (T>γ+δ)

• q will receive HB on time, and never suspect p again

37

ID2203

KTH-2023

Leader Election

KTH-2023

ID2203

LEADER ELECTION VS FAILURE DETECTION

• Failure detection captures failure behaviour

• Detect failed processes

• Leader election (LE) also captures failure behaviour

• Detect correct processes (a single and same for all)

• Formally, leader election is a FD

• Always suspects all processes except one (leader)

• Ensures some properties regarding that process

39

KTH-2023

ID2203

LEADER ELECTION VS. FAILURE DETECTION

We will define two leader election abstractions and algorithms

• Leader election (LE) which “matches” P

• Eventual leader election (Ω) which “matches” ♢P

40
24

KTH-2023

ID2203

MATCHING LE AND P
P’s properties

P always eventually detects failures (strong completeness)

P never suspects correct processes (strong accuracy)

Completeness of LE

Informally: eventually ditch failed leaders

Formally: eventually every correct process trusts some correct process

Accuracy of LE

Informally: never ditch a correct leader

Formally: No two correct processes trust different correct nodes

• Is this really accuracy?

• Yes! Assume two processes trust different correct processes

• One of them must eventually switch, i.e. leaving a correct node
41

KTH-2023

ID2203

• LE always eventually detects failures

• Eventually every correct process trusts some correct node

• LE is always accurate

• No two correct processes trust different correct processes

• But the above two permit the following

• But P1 is “inaccurately” leaving a correct leader

LE DESIRABLE PROPERTIES

42

p1

p2

p3

elect p3

elect p3

elect p3

elect p1

elect p1 elect p2 elect p1

ok! not ok !

KTH-2023

ID2203

LE DESIRABLE PROPERTIES

To avoid “inaccuracy” we add

Local Accuracy:

If a process is elected leader by pi, all previously elected
leaders by pi have crashed

43

p1

p2

p3

elect p3

elect p3

elect p3

elect p1

elect p1 elect p2 elect p1

Not allowed, as p1 is correct

KTH-2023

ID2203

INTERFACE OF LEADER ELECTION

Module:

Name: LeaderElection (le)

Events:

Indication: 〈leLeader | pi〉

Indicate that leader is node pi

Properties:

• LE1 (eventual completeness). Eventually every correct process trusts
some correct process

• LE2 (agreement). No two correct processes trust different correct
processes

• LE3 (local accuracy). If a process is elected leader by pi, all previously
elected leaders by pi have crashed

44

KTH-2023

ID2203

IMPLEMENTING LE

• Globally rank all processes

E.g. rank ordering rank(p1)>rank(p2)>rank(p3)> …

• maxrank(S)

The process p ∊ S, with the largest rank

45

KTH-2023

ID2203

IMPLEMENTING LE
LeaderElection, instance le

Uses:

PerfectFailureDetector, instance P

upon event 〈le, Init〉 do

suspected := ∅

leader := ⊥

upon event 〈P, Crash |p〉 do

suspected := suspected ∪ {p}

upon leader ≠ maxrank(Π \ suspected) do

leader := maxrank(Π \ suspected)

trigger 〈le, Leader | leader〉

46

ID2203

KTH-2023

Eventual Leader Election - Ω

KTH-2023

ID2203

MATCHING Ω AND ◊P

◊P weakens P by only providing eventual accuracy

Weaken LE to Ω by only guaranteeing eventual agreement

LE Properties:

❑ LE1 (eventual completeness). Eventually

every correct node trusts some correct
node

❑ LE2 (agreement). No two correct nodes
trust different correct nodes

❑ LE3 (local accuracy). If a node is elected
leader by pi, all previously elected leaders
by pi have crashed

eventual

48

KTH-2023

ID2203

INTERFACE OF EVENTUAL LEADER ELECTION

Module:

Name: EventualLeaderElection (Ω)

Events:

Indication (out): 〈Ω, Trust | pi〉

Notify that pi is trusted to be leader

Properties:

ELD1 (eventual completeness). Eventually every correct node trusts
some correct node

ELD2 (eventual agreement). Eventually no two correct nodes trust
different correct node

49

KTH-2023

ID2203

EVENTUAL LEADER DETECTION Ω

In crash-stop process abstraction

Ω is obtained directly from ◊P

• Each process trusts the process with highest rank
among all processes not suspected by ◊P

• Eventually, exactly one correct process will be
trusted by all correct processes

50

KTH-2023

ID2203

IMPLEMENTING Ω
EventualLeaderElection, instance Ω

Uses: EventuallyPerfectFailureDetector, instance ◊P

upon event 〈 Ω, Init〉 do

suspected := ∅; leader := ⊥

upon event 〈◊P, Suspect |p〉 do

suspected := suspected ∪ {p}

upon event 〈◊P, Restore | p〉 do

 suspected := suspected \ {p}

upon leader ≠ maxrank(Π \ suspected) do

leader := maxrank(Π \ suspected)

trigger 〈 Ω, Trust | leader〉

51

KTH-2023

ID2203

Ω FOR CRASH RECOVERY

Can we elect a recovered process?

Not if it keeps crash-recovering infinitely often!

Basic idea

Count number of times you’ve crashed (epoch)

Distribute your epoch periodically to all nodes

Elect leader with lowest (epoch, rank(node))

Implementation

Similar to ◊P and Ω for crash-stop

Piggyback epoch with heartbeats

Store epoch, upon recovery load epoch and increment

52

ID2203

KTH-2023

Reductions

KTH-2023

ID2203

REDUCTIONS

We say X≼Y if

• X can be solved given a solution of Y

• Read X is reducible to Y

• Informally, problem X is easier or as hard as Y

54

KTH-2023

ID2203

PREORDERS, PARTIAL ORDERS…

• A relation ≼ is a preorder on a set A if for any x,y,z in A

• x ≼ x (reflexivity)

• x ≼ y and y ≼ z implies x ≼ z (transitivity)

• Difference between preorder and partial order

• Partial order is a preorder with anti-symmetry

• x ≼ y and y ≼ x implies x = y

• For preorder two different objects x and y can be symmetric

• It is possible that x ≼ y and y ≼ x for two different x and y, (x ≠ y)

55

KTH-2023

ID2203

SHORTCUT DEFINITIONS

• We write X≃Y if

• X≼Y and Y≼X

• Problem X is equivalent to Y

• We write X≺Y if

• X≼Y and not X≃Y

• or equivalently, X≼Y and not Y≼X

• Problem X is strictly weaker than Y, or

• Problem Y is strictly stronger than X

56

KTH-2023

ID2203

EXAMPLE
• It is true that ◊P≼P

• Given P, we can implement ◊P

• We just return P’s suspicions.

• P always satisfies ◊P’s properties

• In fact, ◊P≺P in the asynchronous model

• Because not P≼◊P is true

• Reductions common in computability theory

• If X≼Y, and if we know X is impossible to solve

• Then Y is impossible to solve too

• If ◊P≼P, and some problem Z can be solved with ◊P

• Then Z can also be solved with P

57

P
◊P

Possible Traces

KTH-2023

ID2203

WEAKEST FD FOR A PROBLEM?

• Often P is used to solve problem X

• But P is not very practical (needs synchrony)

• Is X a “practically” solvable problem?

• Can we implement X with ◊P?

• Sometimes a weaker FD than P will not solve X

• Proven using reductions

58

KTH-2023

ID2203

WEAKEST FD FOR A PROBLEM

• Common proof to show P is weakest FD for X

• Prove that P≼X

• I.e. P can be solved given X

• If P≼X then ◊P≺X

• Because we know ◊P≺P and P≃X, i.e. ◊P≺P≃X

• If we can solve X with ◊P, then

• we can solve P with ◊P, which is a contradiction

59

ID2203

KTH-2023

How are the detectors related

KTH-2023

ID2203

TRIVIAL REDUCTIONS
• Strongly complete

• ◊P≼P

• P is always strongly accurate, thus also eventually

strongly accurate

• ◊S≼S

• S is always weakly accurate, thus also eventually
weakly accurate

• S≼P

• P is always strongly accurate, thus also always

weakly accurate

• ◊S≼◊P

• ◊P is always eventually strongly accurate, thus also
always eventually weakly accurate

P

◊P S

◊S

61

KTH-2023

ID2203

TRIVIAL REDUCTIONS (2)
• Weakly complete

• ◊Q≼Q

• Q is always strongly accurate, thus also eventually

strongly accurate

• ◊W≼W

• W is always weakly accurate, thus also eventually
weakly accurate

• W≼Q

• Q is always strongly accurate, thus also always weakly

accurate

• ◊W≼◊Q

• ◊Q is always eventually strongly accurate, thus also
always eventually weakly accurate

Q

◊Q W

◊W

62

KTH-2023

ID2203

COMPLETENESS “IRRELEVANT”

Completeness

Accuracy

Strong Weak Eventual
Strong

Eventual
Weak

Strong P S ◊P ◊S

Weak Q W ◊Q ◊W

• Weak completeness trivially reducible to strong

• Strong completeness reducible to weak

• i.e. can get strong completeness from weak

• P≼Q, S≼W, ◊P≼◊Q, ◊S≼◊W,

• They’re equivalent!

• P≃Q, S≃W, ◊P≃◊Q, ◊S≃◊W

63

KTH-2023

ID2203

PROVING IRRELEVANCE OF COMPLETENESS

• Weak completeness ensures

• every crash is eventually detected by some correct node

• Simple idea

• Every process q broadcast suspicions Susp periodically

• upon event receive <S,q>

• Susp := (Susp ∪ S) — {q}

• Every crash is eventually detected by all correct p

• Can this violate some accuracy properties?

also works like a
heartbeat

64

KTH-2023

ID2203

MAINTAINING ACCURACY

• Strong and Weak Accuracy aren’t violated

• Strong accuracy

• No one is ever inaccurate

• Our reduction never spreads inaccurate suspicions

• Weak accuracy

• Everyone is accurate about at least one process p

• No one will spread inaccurate information about p

65

KTH-2023

ID2203

MAINTAINING EVENTUAL ACCURACY

• Eventual Strong and Eventual Weak Accuracy
aren’t violated

• Proof is almost same as previous page

• Eventually all faulty processes crash

• Inaccurate suspicions undone

• Will get heartbeat from correct nodes and revise (–{q})

66

KTH-2023

ID2203

RELATION BETWEEN FDS

Q

◊Q W

◊W

P

S

◊S equivalent
reducible to

67

◊P

KTH-2023

ID2203

Ω ALSO A FD

• Can we implement ◊S with Ω?

• I.e. is it true that ◊S≼Ω

• Suspect all nodes except the leader given by Ω

• Eventual Completeness

• All nodes are suspected except the leader (which is correct)

• Eventual Weak Accuracy

• Eventually, one correct node (leader) is not suspected by

anyone

• Thus, ◊S≼Ω

68

KTH-2023

ID2203

Ω EQUIVALENT TO ◊S (AND ◊W)
• We showed ◊S≼Ω, it turns out we also have Ω≼◊S

• I.e. Ω≃◊S

• The famous CHT (Chandra, Hadzilocas, Toueg) result

• If consensus implementable with detector D

• Then Omega can be implemented using D

• I.e. if Consensus≼D, then Ω≼D

• Since ◊S can be used to solve consensus, we have Ω≼D

• Implies ◊W is weakest detector to solve consensus

69

KTH-2023

ID2203

RELATION BETWEEN FDS (2)

Q

◊Q W

◊W

P

◊P S

◊S equivalent
reducible to

Ω

70

ID2203

KTH-2023

 
Combining Abstractions

KTH-2023

ID2203

COMBINING ABSTRACTIONS

Fail-stop

Crash-stop process model

Perfect links + Perfect failure detector (P)

Fail-silent

Crash-stop process model

Perfect links

Fail-noisy

Crash-stop process model

Perfect links + Eventually Perfect failure detector (◊P)

Fail-recovery

Crash-recovery process model

Stubborn links + …

(synchronous)

(asynchronous)

(partially synchronous)

72

