¢ >1D2203

KTH-2023

Advanced Course

buted Systems

Distri

1 Clocks

Logica

ERRE

SRR EERRERY

P LLLLLELL S s o]

Paris Carbone

COURSE TOPICS

» Intro to Distributed Systems
>and Failure Detectors

» Reliable and Causal Order Broadcast

» Distributed Shared Memory-CRDTs

» Consensus (Paxos)

» Replicated State Machines (OmniPaxos, Raft, Zab etc.)
» Time Abstractions and Interval Clocks (Spanner etc.)

» Consistent Snapshotting (Stream Data Management)
» Distributed ACID Transactions (Cloud DBs) [,

KTH-2023

RECAP: CAUSAL ORDER

 Given an execution trace f3,

two events a, b € f§ are causally ordered (a — b) iff either:

« a occurs before b on the same process
o aisasend(m) and b deliver(m) event

- there exists a sequence of causally ordered events from a to b
(transitive) e.g. If a — gcandc —, b

. Two events, a and b, are concurrent if not a —’B b and not b —’B a

¢ Hin22e3

« Concurrent events are denoted as such: a| | b o,

FKTHY

KTH-2023

RECAP: CAUSAL ORDER

p1 ® °®

1 e2
p2
p3
p1
p2
e2
p3

p1
e\

p2
e’

Key Observations

We cannot order any two events in
a D.S. using physical time.

« Multiple Physical Clocks cannot
keep precise physical time.

« We can order any two events in
a D.S. using logical time, i.e.,
causal order.

« Logical Clocks can capture
causality.

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordenng of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multipi

systems
CR Categories: 4.32, 5.29

¢ >1D2203

KTH-2023

A distributed system consists of a collection of disti
proc: which are spatally sep d, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
control unit, the memory units, and the input-output
ch ls are sep pr A system is distributed
if the message transmission delay is not negligible com-
pared to the time between events in a single process.

Wc will concern ourselves pnmanly with systems of

Ily separated ¢ , many of our
remarks will apply more gcnerally In particular, a mul-
tiprocessing system on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
oceur.

In a distributed system, it is sometimes impossible to
say that one of two events occurred first. The relation
“happened before” is therefore only a partial ordering
of the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.

In this paper, we discuss the partial ordering defined
by the “happened before relation. and give a distributed

mechanism for|
illustrate its u
chronization p:
101 can occur |
differs from ¢
avoided by int

LOGICAL CLOCK INTUITION

» A logical clock is :

- an algorithm that assigns a timestamp to each event occurring in a
distributed system. #(a), (D), etc.

« Timestamps can be used to derive a relation between events.

« We are interested in preserving the happen-before relation.
If a —>Bb then t(a) < t(b)

e Two types of clocks: Lamport and Vector clocks

¢ Hin22e3

KTH-2023

Lamport Clocks

LAMPORT CLOCKS

- Each process has a local logical Lamport clock, kept in variable t,
.initially t, = 0
. A process p piggybacks t, on every message sent
.On internal event a:
. t,:=t, + 1 ; perform internal event a
. Sending event of message m:
ct=t, + 1 ; send(m, tp))

. Receiving/Delivering event of message m with timestamp t, from q:

. t,:=max(t,, t,) + 1 ; perform delivery event a

KTH-2023

‘ ©

LAMPORT LOGICAL CLOCKS

G @
P \Ct\ 5

P (X % \

d) 6

time

Lamport logical clocks guarantee that:

If a =g b, then t(a) < t(b),

Can we do better?

if t(a) > t(b), then not (a —gb)

TOTAL ORDER WITH LAMPORT CLOCKS

« We can timestamp with process identifiers.

o The pair (t, p) is unique

Total Order Relation (<) : (¢,, p) < (¢, q) iff either

. l‘p<tq

- L, =1,Ap<q

i.e. break ties using process identifiers

e.g. (5,p5) < (7,P2), (4,P2) < (4’P3)

¢ Hin22e3

KTH-2023

LAMPORT CLOCKS

- Each process has a local logical lamport clock, kept in variable t,
.initially t, = 0
. A process p piggybacks (t, p) on every message sent
.On internal event a:
. t,:=t, + 1 ; perform internal event a
. Sending event of message m:

ctoi=t +1; send(m, (tp, p))

. Receiving/Delivering event of message m with timestamp (tq, q) from q:

. t,:=max(t,, t,) + 1 ; perform delivery event a

¢ d1p2203

KTH-2023

REMARKS

» The total order (<) defined on (¢, p,) pairs is:

- A method to deterministically derive a total order of

events using local and relative process information.
« Always respecting causal order.

« A convention rather than the actual order of events

(whatever that means).

¢ Hin22e3

KTH-2023

Vector Clocks

NON-CAUSALITY AND CONCURRENT EVENTS

. Two events a and b are concurrent (a || 8 b) in an execution E

(trace(E) =) if

. nota *gband not b ga

» Computation theorem implies that if (a ||s b) in 8 then there
are two executions (with traces 5; and 3;) that are similar

where a occurs before bin 51, b occurs before a in 3,

¢ Hin22e3

- KTH-2023

NON-CAUSALITY AND CONCURRENT EVENTS

&)

pd 1 2 §\

time

VECTOR CLOCKS

. Lamport Clock Limitation: We cannot tell by looking to the

timestamps of event a and b whether there is a causal relation
between the events, or they are concurrent.

. Vector Clocks guarantee that:
. 1.if v(a) < v(b) then a =g b
. 2.if a—gbthen v(a)< v(b) (same as Lamport Clocks)

. where v(a) is a vector clock of event a

¢ Hin22e3

KTH-2023

VECTOR CLOCK DEFINITION

e Vector clock for an event a

v(a) = [x1,...,Xx]

- X; is the number of events at p; that happened-before a

P 3 events at p1
5 ~._a 1 event at p2

z \ 0 events at p3
P) [3,1,0]

¢ Hin22e3

time

KTH-2023

VECTOR TIME IMPLEMENTATION

* Processes p1,...,pn € P

. Each process p; has local vector v of size n (number of processes)
. vli]=0foralliin 1...n
. Piggyback v on every sent message

. For each transition (on each event) update local v at p;:
. vl[i] := v[i] + 1 (internal, send or deliver)

. V[j] := max(v[j], Vq[j]), forallj=i € | P| (deliver)

. Where v is clock in message received from process q Oorozz03
q

KTH-2023

COMPARING VECTOR CLOCKS

. v <v iff
|

v [i] <. [i] for Vi € | P| [3,0,0] =[3,1,0]

. Vp<tiff [3,0,0] < [3,1,0]
« V.SV, and for some i, Vp[i] < Vq[i]
A and v, are concurrent (Vp || Vq) iff [3,1 ,O] <> [4,0,0]

. notv <v ,and not v <v
P q q P

+ Vector clocks guarantee
. If v(a) < v(b) then a — b, and

. Ifa—Db, then v(a) < v(b)

« where v(a) is the vector clock of event a

—_— KTH-2023

¢ Hin22e3
i

FKTHY

P110,0,0]

P210,0,0]

P

310,0,0]

P110,0,0]

P210,0,01

P

310,0,0]

EXAMPLE OF VECTOR CLOCKS

/\
[1,0,0] 12,0,0] [4,0,0]
a
[3,1,0] 2,0]
b
A
[0,0,1] [3,2,2]
time
a
/\
[1,0,0] 12,0,0] [4,0,0]
[3,1,0] 2,0]
b
[0,0,1] [3,2,2]
time

v(a) < v(b) impliesa — b

v(a) <> v(b) implies a || b

¢ Hip2203

KTH-2023

LIMITATIONS OF VECTOR CLOCKS?

P110,0,00 T.0,01 12,000 560 [4,0,0]

P210,0,0] [3,1,0] 0]

p3[0,0,0] [0,0.1] 3,2,2]
time

 Vectors need to be statically defined of size n

- Insufficient for problems that require total event ordering

¢ Hip2203

KTH-2023

ORDERING - SUMMARY

. the relation _’B on events in executions
« Partial: —'B doesn’t order concurrent events

- the relation < on Lamport logical clocks
- Total: any two distinct clock values are ordered
(adding pid)
- the relation < on vector timestamps

« Partial: timestamp of concurrent events not ordered

¢ Hin22e3

2 KTH-2023

LOGICAL CLOCK INVARIANTS

Lamport clock
If a —>Bb then t(a) < t(b) (1)

Ift(a) < t(b) then not b —,a (2)

Vector clock
If a e b then v(a) < v(b) (1)
If v(a) < v(b) then a — b (2)

