
ID2203

KTH-2023

Distributed Systems

Advanced Course

Paris Carbone

Logical Clocks

KTH-2023

ID2203

‣ Intro to Distributed Systems

‣ Fundamental Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory-CRDTs

‣ Consensus (Paxos)

‣ Replicated State Machines (OmniPaxos, Raft, Zab etc.)

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

COURSE TOPICS

2

KTH-2023

ID2203

RECAP: CAUSAL ORDER
• Given an execution trace ,

two events are causally ordered () iff either:

• a occurs before b on the same process

• a is a send(m) and b deliver(m) event

• there exists a sequence of causally ordered events from a to b

(transitive) e.g. If and

• Two events, a and b, are concurrent if not a ➝β b and not b ➝β a

• Concurrent events are denoted as such:

β
a, b ∈ β a →β b

a →β c c →β b

a | |b
3

KTH-2023

ID2203

RECAP: CAUSAL ORDER

4

e1 e2
p1

p2

p3

e1

e2

p1

p2

p3

e1

e’ e”

e2

p1

p2

p3

ID2203

KTH-2023

Key Observations

• We cannot order any two events in
a D.S. using physical time.

• Multiple Physical Clocks cannot
keep precise physical time.

• We can order any two events in
a D.S. using logical time, i.e.,
causal order.

• Logical Clocks can capture
causality.

KTH-2023

ID2203

LOGICAL CLOCK INTUITION

• A logical clock is :

• an algorithm that assigns a timestamp to each event occurring in a

distributed system. , etc.

• Timestamps can be used to derive a relation between events.

• We are interested in preserving the happen-before relation.

If a ➝β b then t(a) < t(b)

• Two types of clocks: Lamport and Vector clocks

t(a), t(b)

6

ID2203

KTH-2023

Lamport Clocks

KTH-2023

ID2203

LAMPORT CLOCKS

•Each process has a local logical Lamport clock, kept in variable t
p
,

•initially t
p
 = 0

• A process p piggybacks t
p
 on every message sent

•On internal event a:

• t
p
 := t

p
 + 1 ; perform internal event a

• Sending event of message m:

• t
p
 := t

p
 + 1 ; send(m, t

p
))

• Receiving/Delivering event of message m with timestamp tq from q:

• t
p
 := max(t

p
, t

q
) + 1 ; perform delivery event a

8

KTH-2023

ID2203

LAMPORT LOGICAL CLOCKS

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

Lamport logical clocks guarantee that:

If a ➝𝛽 b, then t(a) < t(b),

if t(a) ≥ t(b), then not (a ➝𝛽 b)

9

Can we do better?

KTH-2023

ID2203

TOTAL ORDER WITH LAMPORT CLOCKS

• We can timestamp with process identifiers.

• The pair (t, p) is unique

Total Order Relation () : iff either

•

•

i.e. break ties using process identifiers

e.g. (5,p5) < (7,p2), (4,p2) < (4,p3)

≺ (tp, p) ≺ (tq, q)
tp < tq
tp = tq ∧ p < q

10

KTH-2023

ID2203

LAMPORT CLOCKS

•Each process has a local logical lamport clock, kept in variable t
p
,

•initially t
p
 = 0

• A process p piggybacks (t
p
, p) on every message sent

•On internal event a:

• t
p
 := t

p
 + 1 ; perform internal event a

• Sending event of message m:

• t
p
 := t

p
 + 1 ; send(m, (t

p
, p))

• Receiving/Delivering event of message m with timestamp (tq, q) from q:

• t
p
 := max(t

p
, t

q
) + 1 ; perform delivery event a

11

KTH-2023

ID2203

REMARKS

• The total order () defined on pairs is:

• A method to deterministically derive a total order of

events using local and relative process information.

• Always respecting causal order.

• A convention rather than the actual order of events

(whatever that means).

≺ (t, pi)

12

ID2203

KTH-2023

Vector Clocks

KTH-2023

ID2203

NON-CAUSALITY AND CONCURRENT EVENTS

• Two events a and b are concurrent (a ||𝛽 b) in an execution E

(trace(E) = 𝛽) if

• not a ➝𝛽 b and not b ➝𝛽 a

• Computation theorem implies that if (a ||𝛽 b) in 𝛽 then there

are two executions (with traces 𝛽1 and 𝛽2) that are similar

where a occurs before b in 𝛽1, b occurs before a in 𝛽2

14

KTH-2023

ID2203

NON-CAUSALITY AND CONCURRENT EVENTS

15

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

a

b

a

b

KTH-2023

ID2203

VECTOR CLOCKS

• Lamport Clock Limitation: We cannot tell by looking to the

timestamps of event a and b whether there is a causal relation
between the events, or they are concurrent.

• Vector Clocks guarantee that:

• 1. if v(a) < v(b) then a ➝𝛽 b

• 2. if a ➝𝛽 b then v(a) < v(b) (same as Lamport Clocks)

• where v(a) is a vector clock of event a

16

KTH-2023

ID2203

VECTOR CLOCK DEFINITION

•Vector clock for an event a

• v(a) = [𝑥1,…,𝑥n]

•𝑥i is the number of events at pi that happened-before a

17

p1

p2

p3

time

a
3 events at p1

1 event at p2

0 events at p3

[3, 1, 0]

KTH-2023

ID2203

VECTOR TIME IMPLEMENTATION

• Processes p1, …, pn

• Each process pi has local vector v of size n (number of processes)

• v[i] = 0 for all i in 1…n

• Piggyback v on every sent message

• For each transition (on each event) update local v at :

• v[i] := v[i] + 1 (internal, send or deliver)

• v[j] := max(v[j], v
q

[j]), for all j ≠ i (deliver)

• where v
q

 is clock in message received from process q

∈ P

pi

∈ |P |

18

KTH-2023

ID2203

COMPARING VECTOR CLOCKS

• v
p
≤ v

q
 iff

• vp[i] ≤ vq[i] for

• v
p

< v
q
 iff

• vp ≤ vq and for some i, vp[i] < vq[i]

• v
p
 and v

q
 are concurrent (v

p
 || v

q
) iff

• not vp<vq, and not vq<vp

• Vector clocks guarantee

• If v(a) < v(b) then a ➝ b, and

• If a ➝ b, then v(a) < v(b)

• where v(a) is the vector clock of event a

∀i ∈ |P |

19

[3,0,0] ≤ [3,1,0]

[3,0,0] < [3,1,0]

[3,1,0] <> [4,0,0]

KTH-2023

ID2203

EXAMPLE OF VECTOR CLOCKS

20

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

b

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

b

v(a) < v(b) implies a ➝ b

v(a) <> v(b) implies a || b

KTH-2023

ID2203

LIMITATIONS OF VECTOR CLOCKS?

21

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

• Vectors need to be statically defined of size n

• Insufficient for problems that require total event ordering

KTH-2023

ID2203

ORDERING - SUMMARY

• the relation ➝β on events in executions

• Partial: ➝β doesn’t order concurrent events

• the relation on Lamport logical clocks

• Total: any two distinct clock values are ordered

(adding pid)

• the relation on vector timestamps

• Partial: timestamp of concurrent events not ordered

≺

≺

22

KTH-2023

ID2203

LOGICAL CLOCK INVARIANTS

Lamport clock

If a ➝β b then t(a) < t(b) 	 (1)

If t(a) < t(b) then not b ➝β a (2)

Vector clock

If a ➝β b then v(a) < v(b) (1)

If v(a) < v(b) then a ➝β b (2)

23

