Advanced Course

Distributed Systems

Introduction to Distributed Systems

@.
R
‘\/ >

Paris Carbone

COURSE TOPICS

p [Intro to Distributed Systems

S0 | Fundamental Abstractions and Failure Detectors
%+ ¥ Reliable and Causal Order Broadcast
P &> Distributed Shared Memory-CRDT's

Py
s> Consensus (Paxos)

-y
-
N

¢ MNID2203

KTH-2023

What 1s a distributed system?

WHAT IS A DISTRIBUTED SYSTEM?

"A set of nodes, connected by a network, which appear to
its users as a single coherent system”

P1 P2 . Pn
M]

send T receive
l‘ ‘ ‘E

Network
(' NID2203

KTH-2023

WHAT IS A DISTRIBUTED ALGORITHM

“A copy of a program running in each process”

¢ MNID2203

KTH-2023

(OUR FOCUS IN THIS COURSE

e Concepts (Processes, Messages, Failures)
e Models (assumptions about system)

e Given the model...

» Which problems are solvable / not solvable
» W hat are the core problems in distributed systems
» What are the algorithms

» How to reason about correctness

¢ MNID2203

KTH-2023

WHY STUDY DISTRIBUTED SYSTEMS?

[t is important, useful and interesting

Societal importance o

Internet

WWW
Cloud computing (e.g., Google, Amazon)

Edge computing
Small devices (mobiles, sensors)

¢ MNID2203

KTH-2023

WEB SERVICES ARE DISTRIBUTED SYSTEMS OF DISTRIBUTED SYSTEMS

2023-01-19

REST

Sockets

Files

Events
Streams

Storage

Digital Futures

Each subsystem is a point of critical failure

Kubernetes, Mesos, YARN, ...

Cloud or on-premise
10

" | Kafka Streams

Low Latency

Source: Portals Presentation: Carbone, Haller

KTH-2023

d

t

WHY STUDY DISTRIBUTED SYSTEMS?

Internet Edge Computing Cloud Computing

10

WHY STUDY DISTRIBUTED SYSTEMS?

'

Internet

()

P6

P7

Edge Computing

P8

P9

_

Cloud Computing

11

WHY STUDY DISTRIBUTED SYSTEMS?

P11

P12

P13

¢ SID2203

KTH-2023

WHY STUDY DISTRIBUTED SYSTEMS?

[t is important and useful

o Technical importance
e Improve scalability
e Improve reliability
e Inherent distribution

WHY STUDY DISTRIBUTED SYSTEMS?

[t is very challenging!

Partial Failures

Network (dropped messages, partitions)

Node failures

Concurrency

Parallel

Nodes execute in parallel .
computing

Messages travel asynchronously

Recurring core problems

¢ MNID2203

KTH-2023

Core Problems in Distributed Systems

What types of problems are there?

TEASER: TWO GENERALS PROBLEM

“Two generals need to coordinate an attack”

e Must agree on time to attack

e Theyll win only if they attack simultaneously
« Communicate through messengers

e Messengers may be killed on their way

¢ MNID2203

KTH-2023

16

TEASER: TWO GENERALS PROBLEM

TEASER: TWO GENERALS PROBLEM

attack!
/\ E

~ \(\\ f" ,/’7 - o B

V4

TEASER: TWO GENERALS PROBLEM

\ PR
»,« sure! please confirm

yes.please confirm
Is 18:00 ok?

19

TEASER: TWO GENERALS PROBLEM

A

\ "R
@
» 4

\J
ok.confirmed?

alright! confirm?

sure! please confirm

yes.please confirm
Is 18:00 ok?

In

20

TEASER: TWO GENERALS PROBLEM

ambushed!

~ \(\ f" § /’7

Impossible to solve!

21

TEASER: TWO GENERALS PROBLEM

Applicability to distributed systems

» Two processes need to agree on a value before a
specific time-bound

» Communicate by messages using an unreliable
channel

Agreement 1s a core problem...

¢ MNID2203

KTH-2023

2

CONSENSUS: AGREEING ON A NUMBER

Consensus problem

All nodes/processes propose a value
Some nodes (non correct nodes) might crash & stop
responding

The algorithm must ensure a set of properties
(specification):

p All correct nodes eventually decide

» Every node decides the same

» Only decide on proposed values

¢ MNID2203

KTH-2023

EXAMPLE: AGREEING ON A TARGET

attack B

attack A

attack B

Consensus ? Consensus ? Consensus

i KTH-2023

EXAMPLE: AGREEING ON A TARGET

N
[)
A confirmed ﬁ A confirmed

I A confirmed

Consensus

=R KTH-2023

Consensus

Consensus

EXAMPLE: AGREEING ON A TARGET

attack!

nl A
Ny
< & = QI ll

N\
N

Consensus

Consensus

i KTH-2023

Consensus

EXAMPLE: AGREEING ON A TARGET

attack B

attack A

attack B

Consensus ? Consensus ? Consensus

. KTH-2023

EXAMPLE: AGREEING ON A TARGET

ambush!

? Consensus

i KTH-2023

EXAMPLE: AGREEING ON A TARGET

A confirmed

L
A confirmed %

Consensus

i KTH-2023

Consensus

Consensus

EXAMPLE: AGREEING ON A TARGET

attack!

n/ Al
Ny
< & s QI "

N\
N

Consensus

Consensus

i KTH-2023

Consensus

IS CONSENSUS SOLVABLE?

Consensus problem
All nodes propose a value
Some nodes might crash & stop responding

The algorithm must ensure:
p All correct nodes eventually decide
» Every node decides the same
» Only decide on proposed values

(CONSENSUS IS IMPORTANT

Distributed Databases / Cloud Stores

Concurrent changes/transactions to same data

icommit}: If every node agrees to commit

tabort}: If at least one node aborts

Use a form of consensus: atomic commit
Only two proposal values {commit, abort;

¢ MNID2203

KTH-2023

BROADCAST PROBLEM

Atomic Broadcast

» A node broadcasts a message
» If sender correct, all correct nodes deliver msg
» All correct nodes deliver the same messages

» Messages delivered in the same order

¢ MNID2203

KTH-2023

ATOMIC BROADCAST IS IMPORTANT

Replicated services

» Multiple servers (processes)
» Execute the same sequence of commands

» Replicated State Machines RSM

Use atomic broadcast
Provide fault tolerance

¢ MNID2203

KTH-2023

¢ MNID2203

KTH-2023

Can we use atomic broadcast to solve consensus?

ATOMIC BROADCAST <= (CONSENSUS

[. Atomic broadcast can be used to solve Consensus!

i.e., Every node broadcasts its proposal
» Decide on the first received proposal

» Messages received in same order
» Thus, all nodes will decide the same value.

[I. Consensus can be used to solve Atomic broadcast

(more on that later in the course)

[+II: Atomic Broadcast equivalent to Consensus

¢ MNID2203

KTH-2023

ATOMIC BROADCAST <= CONSENSUS

%

l attack A

Consensus

l attack A

Atomic

Broadcast

A M

l attack B l attack B
Consensus

Consensus

lattack B attack B

¢ MNID2203

KTH-2023

ATOMIC BROADCAST <= CONSENSUS

- S S

Iattack A Iattack A
Consensus Consensus Consensus

attack A attack A attack A

I attack A

Atomic Atomic Atomic

Broadcast Broadcast Broadcast

¢ MNID2203

KTH-2023

ATOMIC BROADCAST <= (CONSENSUS

ﬁattacking A ﬁattacking A ﬁattacking A

Consensus Consensus Consensus

attack B attack B attack B

Atomic Atomic Atomic

Broadcast Broadcast Broadcast

¢ MNID2203

KTH-2023

Models of Distributed Systems

How to reason about them?

MODELLING A DISTRIBUTED SYSTEM

Timing assumptions
Processes

» Bounds on time to make a computation step

Network

» Bounds on time to transmit a message between a sender and a receiver

Clocks

» Lower and upper bounds on clock drift rate

¢ MNID2203

KTH-2023

MODELLING A DISTRIBUTED SYSTEM

Failure assumptions

Processes

» W hat kind of failure a process can exhibit?
» Crashes and stops

» Behaves arbitrary (Byzantine)

Network

» Can a network channel drop messages?

» Can certain channels temporarily disconnect? (partitions)

¢ MNID2203

KTH-2023

MODELING A DISTRIBUTED SYSTEM

¢ MNID2203

MODELING A DISTRIBUTED SYSTEM

MODELING A DISTRIBUTED SYSTEM

P1 P2 P3
4 4~

NETWORK FAILURES

P p_z D3
\ A4

¢ MNID2203

KTH-2023

NETWORK FAILURES

P1 P2 P3
AN
\ 4
(dropped

¢ MNID2203

KTH-2023

NETWORK PARTITIONS

¢ MNID2203

KTH-2023

PARTIAL NETWORK CONNECTIVITY

P1

P2 P3

N etWO rk ¢ HID2203
P dantc !
B ot

PROCESS FAILURES

P p_z D3
\ A4

¢ MNID2203

KTH-2023

PROCESS FAILURES

P P2 D3

¢ MNID2203

KTH-2023

PROCESS FAILURES

P1 P3
“IIE!I’[....."“-~.

¢ MNID2203

KTH-2023

PROCESS FAILURES

P1 P3

A
[&]—_ 44

¢ MNID2203

KTH-2023

BYZANTINE PROCESSES

Network

¢ MNID2203

KTH-2023

BYZANTINE PROCESSES

Network

¢ MNID2203

KTH-2023

BYZANTINE PROCESSES

Network

¢ MNID2203

KTH-2023

MODELLING A DISTRIBUTED SYSTEM

The Asynchronous System Model

» No bound on time to deliver a message
» No bound on time to compute

» Clocks are not synchronized

Internet is essentially asynchronous

IMPOSSIBILITY OF CONSENSUS

Consensus i1s non-solvable in asynchronous systems

if node crashes can happen. €& @

Implications on
» Atomic broadcast
» Atomic commit

» [eader election

¢ MNID2203

KTH-2023

MODELLING A DISTRIBUTED SYSTEM

Synchronous system

» Known bound on time to deliver a message (latency)
» Known bound on time to compute

» Known lower and upper bounds in physical clock
drift rate

Examples:
» Embedded systems (shared clock)

» Multicore computers

¢ MNID2203

B qnst
KTH-2023

POSSIBILITY OF CONSENSUS

Consensus is solvable in synchronous system with up to N-1 crashes

Intuition behind solution
» Accurate crash detection
»Every node sends a message to every other node

»[f no msg from a node within bound, node has crashed

Not useful for Internet, how to proceed?

¢ MNID2203

KTH-2023

MODELLING A DISTRIBUTED SYSTEM

A more realistic view of most systems (e.g., over internet)
» Bounds respected mostly
» Occasionally violate bounds (congestion/failures)

How do we model this?

Partially synchronous system

p Initially system is asynchronous

» Eventually the system becomes synchronous

¢ MNID2203

By el
KTH-2023

POSSIBILITY OF CONSENSUS

Consensus solvable in any partially synchronous

system with up to N/2 crashes & &5

¢ MNID2203

KTH-2023

FAILURE DETECTORS

[Let each node use a failure detector

» Detects crashes
»Implemented by heartbeats and waiting
» Might be initially wrong, but eventually correct

Consensus and Atomic Broadcast solvable with
failure detectors

How? Attend rest of course!

¢ MNID2203

KTH-2023

MODELING A DISTRIBUTED SYSTEM

Timed Asynchronous system

» No bound on time to deliver a message
» No bound on time to compute

» Clocks have known clock-drift rate

Another realistic model for the Internet

¢ MNID2203

KTH-2023

BYZANTINE FAULTS

Some processes might behave arbitrarily

» Sending wrong information
p Omit messages...

Byzantine algorithms that tolerate such faults

» Only tolerate up to 1/3 Byzantine processes
» Non-Byzantine algorithms can often tolerate 2
nodes in the asynchronous model

¢ MNID2203

KTH-2023

SELF-STABILIZING ALGORITHMS

Wont be covered 1n the course but cool to know.

» Robust algorithms that run forever
System might temporarily be incorrect
But eventually always becomes correct

p System can either be in a legitimate state or an illegitimate
state (invariant)

Self-stabilizing algorithm iff
Convergence
Given any illegitimate state, system eventually goes to a legitimate state
Closure
[f system in a legitimate state, it remains in a legitimate state

¢ MNID2203

KTH-2023

SELF-STABILIZING EXAMPLE

Token ring algorithm
Wish to have one token at all

times circulating among processes

Self-Stabilization
Error leads to 2,3,... tokens

Ensure always 1 token eventually

¢ MNID2203

KTH-2023

SUMMARY

Distributed systems everywhere
Set of processes (nodes) cooperating over a network

Few core problems reoccur
Consensus, Broadcast, Leader election, Shared Memory

Different failure scenarios important
Crash stop, Byzantine, self-stabilizing algorithms

Interesting research directions
Large scale dynamic distributed systems

¢ MNID2203

KTH-2023

