ID2203 –Distributed Systems, Advanced Proof Exercise – VT20 P3

TA – Max Meldrum <mmeldrum@kth.se>

0 Notation

- For any set B, \bar{B} is the complement (or dual) of B, that is U/B for some universal set U.
- \mathbb{R} is the set of real numbers.
- N is the set of natural numbers (starting at 1).
- \mathbb{B} is the boolean set $\{\bot, \top\}$ or $\{true, false\}$.
- |X| is the size (number of items) of a set X.

1 Timeline

You must solve all the tasks (to the best of your ability) by February 3rd, and we will discuss them during the Exercise session.

2 Tasks

2.1 Dual Reduction

Show that, for all sets $A, B, A \subseteq (A \cap B) \cup (A \cap \overline{B})$.

2.2 Induced Orders

Show that, for any set X and function $f: X \to \mathbb{R}$, if f is *injective*, then $R = \{(a, b) \mid a, b \in X \text{ and } f(a) \leq f(b)\}$ is a total order on X (we say "f induces a total order on X").

Tip: Show Antisymmetry $(\forall_{x,y\in X} \ xRy \land yRx \Rightarrow x = y)$, Transitivity $(\forall_{x,y,z\in X} \ xRy \land yRz \Rightarrow xRz)$, and Totality $(\forall_{x,y\in X} \ xRy \lor yRx)$ for (X,R).

2.3 Least Elements

Is the following proposition true or false? For every non-empty, finite set X with a total order $R \subseteq X^2$, we can find an element $l \in X$, such that $\forall_{x \in X} \ lRx$.

Tip: Relate X to an equal sized prefix of \mathbb{N} .

2.4 De Morgan

Are the following two propositions (individually) true or false? For all sets A, B,

1.
$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

2.
$$\overline{(A \cup B)} = \overline{A} \cup \overline{B}$$

Tip: To show =, show mutual inclusion \subseteq , and \supseteq .