Algorithms — Consensus in the Fail-Noisy Model

Algorithm 1 Leaderless Repeatable Paxos - Prepare Phase
Implements:

Consensus, instance c.

Uses:
BestEffortBroadcast, instance beb.
PerfectPoint ToPointLinks, instance pp2p.

1: upon event (Init) do

2 decided := false

3 promises = ()

4: ts: =0 > logical clock for Paxos rounds
5 numOfAccepts := 0

6 pv = av:= L > Propose and Accept Values
7 promBallot := accBallot := (0,0)

8: function PROPOSE

9: if —decided then

10: ts:=1ts+1

11: numQOfAccepts == 0

12: promises = ()

13: trigger (beb, Broadcast | [PREPARE, (ts,RANK(self))])

14: upon event (¢, Propose | v) do
15: pv =V
16: PROPOSE()

17: upon event { pp2p, Deliver | p,[PROMISE, b, a,v]) do
18: if (ts,RANK(self)) = b then

19: promises = promises U (a,v)

20: if #promises = % then

21: (mazBallot,value) := HIGHESTBYBALLOT (promises)

22: pv = value if value # L else pv

23: trigger (beb, Broadcast | [ACCEPT, (ts, RANK(self)), pv])

24: upon event (pp2p, Deliver | p, [ACCEPTED, ballot]) do
25: if (ts,RANK(self)) = ballot then

26: numO f Accepts := numO f Accepts + 1
27: if numO f Accepts = (]\[274_1) then
28: trigger (beb, Broadcast | [DECIDED, pv])

Algorithm 2 Leaderless Repeatable Paxos - Accept and Decide Phases

29: upon event (beb, Deliver | p, [PREPARE, ballot]) do
30: if promBallot < ballot then

31: promBallot := ballot

32: trigger (pp2p, Send | p, [PROMISE, promBallot, accBallot, av])
33: else

34: trigger (pp2p, Send | p, [NACK, ballot])

35: upon event (beb, Deliver | p, [ACCEPT, ballot,v]) do
36: if promBallot < ballot then

37: promBallot := accBallot := ballot

38: av ‘= v

39: trigger (pp2p, Send | p, [ACCEPTED, ballot])
40: else

41: trigger (pp2p, Send | p, [NACK, ballot])

42: upon event (pp2p, Deliver | p, [INACK, ballot]) do
43: if (ts, RANK(self)) = ballot then
44: PROPOSE()

45: upon event (beb, Deliver | p, [DECIDED, v]|) do
46: if —decided then

4T: trigger (¢, Decide | v)

48: decided = true

Algorithm [I] can eventually terminate when a paxos round is complete,
after several failed attempts. To minimise congestion and reach decision in
less rounds, one can enforce a backoff strategy so that competing processes
wait for increased random time before they attempt to propose again. Al-
gorithm [3| shows an example of such a strategy. Mind that we only show
the changes to Algorithm [T}, for brevity.

Algorithm 3 Leaderless Repeatable Paxos (with Backoff)
Implements:

Consensus, instance c.

Uses:

BestEffortBroadcast, instance beb.
PerfectPointToPointLinks, instance pp2p.

1:

2: upon event (Init) do

3: e > skipped rest of assignments for brevity

4: backoffDelay := delay

5:

6: upon event (pp2p, Deliver | p,[NACK, ballot]) do

7: if (ts, RANK(self)) = ballot then

8: attemptDelay := RANDOM(0, backoffDelay)

9: startTimer(attemptDelay, ATTEMPTPROPOSE)

10: backoffDelay = backoffDelay * 2

11: upon event (Timeout | ATTEMPTPROPOSE) do
12: PROPOSE()

13: ...

Algorithm 4 Abortable Paxos - Prepare Phase

Implements:
AbortableConsensus, instance ac.

Uses:
BestEffortBroadcast, instance beb;
PerfectPoint ToPointLinks, instance pp2p.

upon event (ac, Init) do

1:

2 t:=0; > logical clock
3 prepts = 0; > prepared timestamp
4: (ats, av) := (0, L); > timestamp and value accepted
5 (pts, pv) := (0, L); > proposer’s timestamp and value
6 readlist := [L]V;

7

acks = 0;

8: upon event (ac, Propose | v) do
9: t:=t+1;

10: pts =1t x N + rank(self);

11: pU = v;

12: readlist := [L]V;

13: acks := 0;

14: trigger (beb, Broadcast | [PREPARE, pts,t])

15: upon event (beb, Deliver | q,[PREPARE, ts,t']) do
16: t :=max(t,t') + 1;
17: if ts < prepts then

18: trigger (pp2p, Send | q,[NACK, ts,t])

19: else

20: prepts 1= ts;

21: trigger (pp2p, Send | q,[PREPAREACK, ats, av, ts,t])

Algorithm 5 Abortable Paxos: Accept Phase

22: upon event (pp2p, Deliver | q,[NACK, pts’,t']) do
23: t:=max(t,t')+1;

24: if pts’ = pts then

25: pts := 0;

26: trigger (ac, Abort)

27: upon event { pp2p, Deliver | q, [PREPAREACK, ts,v, pts’,t']) do
28: t:=max(t,t') + 1;
29: if pts’ = pts then

30: readlist[q] := (ts,v);

31: if #(readlist) > N/2 then

32: (ts,v) := highest(readlist); > pair with greatest timestamp
33: if ts # 0 then

34: pU = v;

35: readlist == [1]V;

36: trigger (beb, Broadcast | [ACCEPT, pts, pv,t])

37: upon event (beb, Deliver | q,[ACCEPT, ts,v,t']) do
38: t:=max(t,t)+1;
39: if ts < prepts then

40: trigger (pp2p, Send | q,[NACK,ts,t])

41: else

42: ats := prepts :=1s;

43: av = v;

44: trigger (pp2p, Send | q,[ACCEPTACK, ts,t])

45: upon event (pp2p, Deliver | q,[ACCEPTACK, pts’,t']) do
46: t:=max(t,t') + 1;
47: if pts’ = pts then

48: acks := acks + 1;

49: if acks > N/2 then

50: pts := 0;

51: trigger (ac, Return | pv)

