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Schedule - Lectures

Aug 30 - 1. Intro, Course fundamentals, Topics, What is a Robot, History, Applications.

Aug 31 - 3 ROS Introduction 

Aug 31 - 2  Manipulators, Kinematics
Sep 07 - 4. Differential kinematics, dynamics
Sep 09 - 5. Actuators, sensors I (force, torque, encoders, ...)
Sep 12 - 6. Grasping, Motion, Control

Sep 14 - 7. Planning (RRT, A*, ...)
Sep 19 - 8. Behavior Trees and Task Switching

Sep 21 - 9. Mobility and sensing II (distance, vision, radio, GPS, ...)
Sep 26 - 10. Localisation (where are we?)
Sep 28 - 11. Mapping (how to build the map to localise/navigate w.r.t.?)
Oct 03 - 12. Navigation (how do I get from A to B?)

Oct 05 - Q/A - Open questions to your teachers.
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● Differential kinematics

– Jacobians

– Singularities

– Manipulability

– Calculations

● Dynamics

– Forces and accelerations

– algorithms for calculations

Overview
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● For many operations, we are not interested in the 
stationary kinematics, but rather the differential 
kinematics, mainly for the mapping between velocities in 
configuration space and cartesian space

Differential kinematics
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 .               .

Differential kinematics - Vacuum cleaner type
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● The instantaneous transform between velocities in robot 
configuration space and cartesian space is given by the 
Jacobian:

● Where each element j
mn

 in J is defined as 

Differential kinematics

Ẋ=J (Θ)Θ̇

∂K (Θ)m
∂Θn
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● The instantaneous transform between velocities in robot 
configuration space and cartesian space is given by the 
Jacobian:

● Where each element j
mn

 in J is defined as 

Differential kinematics

Ẋ=J (Θ)Θ̇

∂K (Θ)m
∂Θn
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Forward kinematics

● Transform 
0
T

E
 from end effector to base 

frame is dependant on configuration Θ

● The function that generates the end 
effector pose X given Θ, is called forward 
kinematics, K

           X = K(Θ),                r = 
0
T

E
p

E

where p is the position of the endpoint in 
the last frame

● Commonly, we define  K(Θ) to output the 
pose vector X = [x y z α β γ]

T
, where α β γ 

are the Euler Angles
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Forward kinematics

● Transform 
0
T

E
 from end effector to base 

frame is dependant on configuration Θ

● The function that generates the end 
effector pose X given Θ, is called forward 
kinematics, K

           X = K(Θ),                r = 
0
T

E
p

E

where p is the position of the endpoint in 
the last frame

● Commonly, we define  K(Θ) to output the 
pose vector X = [x y z α β γ]

T
, where α β γ 

are the Euler Angles

   

 0TE= 

See R-MPC 2.4
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● The instantaneous transform between velocities in robot 
configuration space and cartesian space is given by the 
Jacobian:

● Where each element j
mn

 in J is defined as 

● Thus, each column in J can be seen as the vector ΔX
i
, or 

the motion in X caused by motion in the joint θ
i
.

Differential kinematics

Ẋ=J (Θ)Θ̇

∂K (Θ)m
∂θn



12

● The closed form of a typical manipulator Jacobian is not 
printable

Differential kinematics
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● The closed form of a typical manipulator Jacobian is not 
printable

Differential kinematics
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● The closed form of a typical manipulator Jacobian is often 
not printable, but can be derived by sequential application 
of frame transforms

● The motion of frame i+1, is a function of the motion of 
frame i and the motion of the joint between them.

Differential kinematics (J.J. Craig chapter 5)
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Differential kinematics (R-MPC chapter 3): Rotational joints
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Differential kinematics (R-MPC chapter 3) - Prismatic joints
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● Consequetive application of link transforms gives us 
velocities in end effector frame

● Note: resulting velocities are multilinear in joint velocities!

● Multiplying by rotation transform 
B
R

E
 gives us velocities in 

base frame

● Thus we can derive J(Θ)

Differential kinematics (J.J. Craig chapter 5)
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Example: Planar robot
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Example: Planar robot
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Example: Planar robot

Ẋ=J (Θ)Θ̇
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Example: Planar robot

. θ
1

θ
2

.

.Ẋ=J (Θ)Θ̇ X
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X = J(   )

● Column j
i
 in J is the contribution of the i:th joint to the 

velocity of the end effector.

● Each column in J can be computed individually.

Jacobians (R-MPC 3.1.3)

Θ Θ̇
.
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X = J(   )

● Column j
i
 in J is the contribution of the i:th joint to the 

velocity of the end effector.

● Each column in J can be computed individually.

Jacobians (R-MPC 3.1.3)

Θ Θ̇
.

Ass
ignment 2

: s
eco

nd part
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Example: Planar robot

What happens if both angles are 0?
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Example: Planar robot

.
       X
    

What happens if both angles are 0?

When the Jacobian loses rank, we 
get a kinematic singularity - we lose 
the ability to generate motion in 
some direction!

θ
1

θ
2

.

.
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Manipulability

● We can generalize this into a concept of manipulability w

       w is proportional to the
  volume of the manipulability

 ellipsoid.

w=√det (JJ T )

Tsuneo Yoshikawa, "Manipulability of Robotic Mechanisms" The International Journal of Robotics 
Research Vol 4, Issue 2, pp. 3 - 9, June 1, 1985
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Manipulability

● We can generalize this into a concept of manipulability w

       w is proportional to the
  volume of the manipulability

 ellipsoid.

w=√det (JJ T )
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Manipulability example

Image: Trossen Robotics
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● The inverse Jacobian is trivial to calculate, as long as the 
Jacobian matrix is invertible.

● If J is not invertible, we can often use pseudo-inverse 
instead.

Jacobians
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● We want to find the inverse kinematics

Jacobians for numerical inverse kinematics

Θ=K−1
(X )
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● We want to find the inverse kinematics

● We start with an approximation 

         

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X )
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● We want to find the inverse kinematics

● We start with an approximation 

         

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X )

X+ϵX=K (Θ+ϵΘ)
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● We want to find the inverse kinematics

● We start with an approximation 

         

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X )

K (Θ)+ϵX=K (Θ+ϵΘ)

X+ϵX=K (Θ+ϵΘ)
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● We want to find the inverse kinematics

● We start with an approximation 

         

● With linear approximation, we get

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X )

ϵX≈J (Θ)ϵΘ

K (Θ)+ϵX=K (Θ+ϵΘ)

X+ϵX=K (Θ+ϵΘ)
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● We want to find the inverse kinematics

● We start with an approximation 

         

● With linear approximation, we get (assuming invertible J)

Jacobians for numerical inverse kinematics

Θ̂=Θ+ϵΘ

Θ=K−1
(X )

ϵX≈J (Θ)ϵΘ

K (Θ)+ϵX=K (Θ+ϵΘ)

ϵΘ≈J
−1

(Θ)ϵX

X+ϵX=K (Θ+ϵΘ)
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● Algorithm for finding inverse kinematics

Given target X and initial approximation 

         

Jacobians for numerical inverse kinematics

Θ̂
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● Algorithm for finding inverse kinematics

Given target X and initial approximation 

repeat

until

         

Jacobians for numerical inverse kinematics

Θ̂

ϵX⩽tolerance
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● Algorithm for finding inverse kinematics

Given target X and initial approximation 

repeat

until

         

Jacobians for numerical inverse kinematics

Θ̂

X̂ :=K (Θ̂)

ϵX⩽tolerance
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● Algorithm for finding inverse kinematics

Given target X and initial approximation 

repeat

until

         

Jacobians for numerical inverse kinematics

Θ̂

X̂ :=K (Θ̂)

ϵX⩽tolerance

ϵX :=X̂−X
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● Algorithm for finding inverse kinematics

Given target X and initial approximation 

repeat

until

         

Jacobians for numerical inverse kinematics

Θ̂

X̂ :=K (Θ̂)

ϵΘ :=J
−1

(Θ̂)ϵx

ϵX⩽tolerance

ϵX :=X̂−X
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● Algorithm for finding inverse kinematics

Given target X and initial approximation 

repeat

until

         

Jacobians for numerical inverse kinematics

Θ̂

Θ̂ :=Θ̂−ϵΘ

X̂ :=K (Θ̂)

ϵΘ :=J
−1

(Θ̂)ϵx

ϵX⩽tolerance

ϵX :=X̂−X
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● Virtual work must be same independent of coordinates

● We remember that:

● Which gives us:

Jacobians for static forces
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● We can now see that for singular configurations, there will 
be directions where the required torque for a given force 
goes to zero, or inversely, the forces generated by a 
given torque tend to infinity. This may cause damage 
to the robot or the environment.

Jacobians for static forces
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● We can also calculate inverse kinematics by virtual forces 
and torques. We apply a "force" correcting the end 
effector position, calculate the torques this would 
generate, and move the robot accordingly. This gives us 
the update step:

● This is useful when inverse of J does not exist, but 
typically converges slower.  

Jacobians for static forces

ϵΘ=J
T
(Θ̂)ϵx



45

Dynamics (R-MPC Chapter 7)
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Dynamics (R- MPC chapter 7) - Rotational joints

.
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Dynamics (R-MPC chapter 7) - Prismatic joints
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Dynamics

Newton - Euler approach:

● Find the acceleration and velocity of each 
joint, working outwards

● Find the necessary torque/force to generate 
that acceleration, adding the external forces 
and torques, working inwards



49

Dynamics
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Dynamics (R-MPC chapter 7) 

The resulting dynamic equations can be written on the 
form (state-space equation):

τ = M (Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) + JT f
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Dynamics (DLR)

τ=M (Θ)Θ̈+V (Θ ,Θ̇)+G (Θ)+J T f
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Dynamics (DLR)
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Dynamics (DLR)



State of the art - industrial manipulation
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Dynamics (DLR)


