Exam

24th of October 2022
14:00-17:00

Properly motivate your answers where suitable!

1. (2 points)
(a) Sketch the graphs of $y=x^{2}+2$ and $x^{2}+y^{2}=9$. Label the points where the graphs cross the x and y axis.
(b) Shade the region for which $y \geq x^{2}+2$ and (simultaneously) $x^{2}+y^{2} \leq 9$.

Solution to (a) and (b): The first graph is the graph of $f(x)=x^{2}$ moved two steps upward. The second graph is the circle centered at the origin with radius 3 . Here is a picture:

2. (2 points)
(a) Give an example of a surjective function which is not bijective.

Solution: An example is

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow[0, \infty) \\
& f(x)=x^{2}
\end{aligned}
$$

It is surjective, because for any $x \in[0, \infty)$, we have $f(\sqrt{x})=x$ so the range is $[0, \infty)$.
It is not injective, because $f(-1)=f(1)$. Thus it is not bijective.
(b) Give an example of an injective function which is not bijective.

Solution: An example is

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=e^{x}
\end{aligned}
$$

It is injective because if $x \neq y$, it follows that $f(x) \neq f(y)$ It is not surjective, since $f(x)>0$ for all $x \in \mathbb{R}$ so the range of f is not equal to \mathbb{R}.
3. (2 points)
(a) Let $\vec{v}=(1,2)$ and $\vec{w}=(2,-1)$. Are the vectors parallell? Are they orthogonal?

Lösning: The vectors \vec{v} and \vec{w} are orthogonal since

$$
\langle\vec{v}, \vec{w}\rangle=1 \cdot 2+2 \cdot(-1)=0
$$

Namely, the angle between the vectors is $\frac{\pi}{2}$ and it follows that they are not parallell.
(b) Write an equation for the line which is perpendicular to $\vec{v}=(1,2)$ and which passes through the point $(3,4)$.
Lösning: The point normal equation gives us

$$
(x-3)+2(y-4)=0
$$

Alternatively, in parametric form, if it is perpendicular to $(1,2)$ then it is parallell to $(-2,1)$ and so the line is given by

$$
t(-2,1)+(3,4)
$$

4. (3 points)

Find all real numbers x satisfying

$$
\begin{equation*}
\frac{1}{x} \leq x+1 \tag{1}
\end{equation*}
$$

Solution: The inequality is undefined for $x=0$.
If $x>0$, then multiplying by x on both sides of the inequality we obtain

$$
\begin{equation*}
1 \leq x^{2}+x \tag{2}
\end{equation*}
$$

Solving $1=x^{2}+x$ we obtain the roots

$$
x=-\frac{1}{2} \pm \frac{\sqrt{5}}{2}
$$

Since we are considering $x>0$, we are left with the root $-\frac{1}{2}+\frac{\sqrt{5}}{2}$, which solves (2). Also if x is bigger than this root then it will also solve (2) since $x^{2}+x$ is monotone increasing for $x>0$. Thus if

$$
x \in\left[-\frac{1}{2}+\frac{\sqrt{5}}{2}, \infty\right)
$$

then solves the inequality.
Now consider (1) when $x<0$. When multiplying by x on both sides of the inequality, we also need to change the inequality around so we obtain

$$
\begin{equation*}
1 \geq x^{2}+x \tag{3}
\end{equation*}
$$

Since we are considering $x<0$, we take the negative root $x=-\frac{1}{2}-\frac{\sqrt{5}}{2}$. If

$$
-\frac{1}{2}-\frac{\sqrt{5}}{2} \leq x<0
$$

then x satisfies the inequality (4) because it certainly holds for e.g. $x=-1 / 2$ and equality is only achieved at the endpoint of the interval $x=-\frac{1}{2}-\frac{\sqrt{5}}{2}$. So the solution to the inequality (1) is

$$
\left[-\frac{1}{2}-\frac{\sqrt{5}}{2}, 0\right) \bigcup\left[-\frac{1}{2}+\frac{\sqrt{5}}{2}, \infty\right)
$$

5. (3 points)
(a) What is the domain of $\cos (\pi+\operatorname{Arcsin}(x))$?

Solution: The domain of Arcsin is $[-1,1]$. Since the domain of \cos is \mathbb{R}, it follows that the domain of $\cos (\pi+\operatorname{Arcsin}(x))$ is $[-1,1]$.
(b) Simplify $\cos (\pi+\operatorname{Arcsin}(x))$.

Solution: We have

$$
\begin{aligned}
\cos (\pi+\operatorname{Arcsin}(x)) & =-\cos (\operatorname{Arcsin}(x)) \\
& = \pm \sqrt{\cos ^{2}(\operatorname{Arcsin}(x))} \\
& = \pm \sqrt{1-\sin ^{2}(\operatorname{Arcsin}(x))} \\
& = \pm \sqrt{1-x^{2}}
\end{aligned}
$$

We proceed to determine whether \pm means + or - . The range of Arcsin is $[-\pi / 2, \pi / 2]$. Since cos is non-negative on $[-\pi / 2, \pi / 2]$, it follows that $-\cos (\operatorname{Arcsin}(x))$ is nonnegative, and so

$$
\cos (\pi+\operatorname{Arcsin}(x))=-\sqrt{1-x^{2}}
$$

6. (4 points)

Consider the vectors

$$
\begin{aligned}
\vec{u} & =(-1,1,-2), \\
\vec{v} & =(2,0,-2) \\
\vec{w} & =(1,0,-1) .
\end{aligned}
$$

Find all vectors which are orthogonal to all three of the vectors \vec{u}, \vec{v}, and \vec{w}.
Solution: We begin by observing that $\vec{v}=2 \vec{w}$, which means that \vec{v} and \vec{w} are parallell. Therefore, all vectors orthogonal to \vec{v} are also orthogonal to \vec{w}, and vice versa. Thus we have reduced the question to finding all vectors orthogonal to \vec{u} and \vec{w}. We see that \vec{u} and \vec{w} can't be parallell, since if there were a real number k satisfying

$$
k(-1,1,-2)=(-k, k,-2 k)=(1,0,-1)
$$

then it follows from the equation for the second component that $k=0$. So we seek all vectors orthogonal to \vec{u} and \vec{w}. Such a vector is given by the cross product

$$
\begin{aligned}
\vec{u} \times \vec{w} & =((1 \cdot(-1)-(-2) \cdot 0,-((-1) \cdot(-1)-(-2) \cdot 1),-1 \cdot 0-1 \cdot 1) \\
& =(-1,-3,-1)
\end{aligned}
$$

(It is a good idea to verify that the solution obtained indeed is orthogonal to \vec{u} and \vec{w}, such a verification is done by checking that the dot product with \vec{u} and $\vec{v}=0$.) We conclude that $(-1,-3,-1)$ and all vectors parallell to it are orthgonal to \vec{u} and \vec{w}. Thus the solution is

$$
k(-1,-3,-1),
$$

for $k \in \mathbb{R}$.
7. (4 points) Consider the polynomial $P(x)=2 x^{3}+3 x^{2}+2 x+3$. Find the roots of P.

Hint: $P(i)=0$.
Solution: Since i is a root, and P is a real polynomial, it follows that $-i$ is also a root. Thus P has the form

$$
\begin{equation*}
P(x)=(a x+b)(x-i)(x+i) \tag{4}
\end{equation*}
$$

for some constants a and b. It follows that

$$
\begin{aligned}
P(x) & =(a x+b)\left(x^{2}+1\right) \\
& =a x^{3}+b x^{2}+a x+b
\end{aligned}
$$

Matching a and b with the original form for P yields $a=2$ and $b=3$. Thus

$$
P(x)=2(x+3 / 2)\left(x^{2}+1\right),
$$

and so the roots of P are $i,-i$, and $-3 / 2$.
8. (4 points) Let

$$
g(x)=2 \log (\sin x)-\log (1+\cos x)-\log (1-\cos x)
$$

where \log is the natural logarithm.
(a) For which $x \in[0,2 \pi)$ is g well-defined?

Solution: Since the domain of \log is $(0, \infty)$, it follows that g is well-defined when all of the following are positive:

$$
\sin x, \quad 1+\cos x, \quad 1-\cos x .
$$

Now $\sin x>0$ for $x \in(0, \pi)$. If $x \in(0, \pi)$ then $1+\cos x>0$ and also $1-\cos x>0$. So g is well-defined if $x \in(0, \pi)$.
(b) Take the domain of g to be the set of all $x \in[0,2 \pi)$ for which g is well-defined (this set is the answer to part (a)). What is the range of g ?
Solution: Observe that if $\sin x>0$ then $2 \log (\sin x)=\log \left(\sin ^{2}(x)\right)$, and similarly $-\log (1+\cos x)-\log (1-\cos x)=-\log \left(1-\cos ^{2} x\right)$. So

$$
g(x)=\log \left(\sin ^{2} x\right)-\log \left(1-\cos ^{2} x\right)
$$

Writing $1-\cos ^{2} x=\sin ^{2} x$, we obtain

$$
g(x)=\log \left(\sin ^{2} x\right)-\log \left(\sin ^{2} x\right)=0 .
$$

The only value g can take is 0 , and so the range of g is $\{0\}$.
9. (4 points)
(a) Find a root to the equation

$$
z^{20}=1-i .
$$

Solution: First write $1-i=\sqrt{2}(\cos (-\pi / 4)+\sin (-\pi / 4))$. Let $\zeta=\frac{z}{2^{1 / 40}}$. Then we need to solve

$$
\zeta^{20}=(\cos (-\pi / 4)+\sin (-\pi / 4))
$$

By de Moivre's theorem, a solution is

$$
\zeta_{1}=(\cos (-\pi / 80)+\sin (-\pi / 80)) .
$$

Thus a solution to the original equation is

$$
z_{1}=2^{1 / 40}(\cos (-\pi / 80)+\sin (-\pi / 80)) .
$$

(b) Find all remaining roots to the same equation

$$
z^{20}=1-i
$$

Solution: If w_{k} is a twentieth root of unity solving

$$
w_{k}^{20}=1,
$$

and z_{1} is the solution from part (a), then $z_{1} w_{k}$ solves

$$
\left(z_{1} w_{k}\right)^{20}=1-i
$$

as desired. Since

$$
w_{k}=\cos (\pi k / 10)+i \sin (\pi k / 10)
$$

for $k=0, \ldots, 19$, we obtain that

$$
\begin{equation*}
z_{1} w_{k}=2^{1 / 40}(\cos (-\pi / 80+\pi k / 10)+i \sin (-\pi / 80+\pi k / 10)) \tag{5}
\end{equation*}
$$

solves the equation for $k=0, \ldots, 19$.
These are 20 distinct solutions (since the roots of unity are distinct). Since there are at most 20 roots to an equation of degree 20 , we have found all the solutions.
10. (2 points)

Prove that $\sin (\pi / 6)=1 / 2$.
Solution: Consider an equilateral triangle with lengths 1 . Since the sum of angles of the triangle is π radians, every angle must be $\frac{\pi}{3}$ radians. Now split the triangle in two pieces by pulling a straight line from a vertex to the middle of the opposite edge. We are left with two new triangles, which are reflections of each other through the straight line, each with angles

$$
\frac{\pi}{6}, \quad \frac{\pi}{3}, \quad \frac{\pi}{2}
$$

radians. Consider one of these new triangles, which looks like this:

It has a right angle, since $\frac{\pi}{2}$ radians corresponds to 90 degrees. The length of the edge opposite the angle $\frac{\pi}{6}$ is $\frac{1}{2}$, since this is an edge of length 1 divided in two. The hypothenuse of the new triangle is of length one. We conclude that

$$
\sin \left(\frac{\pi}{6}\right)=\frac{\frac{1}{2}}{1}=\frac{1}{2}
$$

