Coursework 3

Upload your solutions to Canvas at the latest 23:59 the 11th of October 2022.
Properly motivate your answers where suitable!

1. (3 points)

Assume that a function $f:(0, \infty) \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
f(x y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
f(x)>0 \tag{2}
\end{equation*}
$$

for all $x>1$, and that

$$
\begin{equation*}
f(x)<0 \tag{3}
\end{equation*}
$$

for all $x<1$. Prove that f is a (strictly) monotone increasing function.
Comment: Since the function

$$
f(x)=\log (x)
$$

satisfies these criteria, we have proven that \log is a (strictly) monotone increasing function!
Solution: Assume that $b>a$. Then $f(b)=f\left(a \frac{b}{a}\right)$. Setting $x=a$ and $y=\frac{b}{a}$ in (1), it follows that

$$
\begin{equation*}
f(b)=f(a)+f\left(\frac{b}{a}\right) \tag{4}
\end{equation*}
$$

Since $b>a>0$, it follows that $\frac{b}{a}>1$. Thus by (2), $f\left(\frac{b}{a}\right)>0$. Thus, by (4),

$$
f(b)>f(a)
$$

which proves that f is monotone increasing.
2. (3 points)

Find all complex numbers z satisfying

$$
z^{4}-2 z^{2}+2=0
$$

Hint: First write

$$
x=z^{2}
$$

and solve for x, subsequently solve for z.
Solution: We first solve for $x=z^{2}$: The equation

$$
x^{2}-2 x+2=0
$$

has roots

$$
x=1 \pm i
$$

Thus

$$
z^{2}=1 \pm i
$$

so

$$
z^{2}=\sqrt{2}(\cos (\pm \pi / 4)+i \sin (\pm \pi / 4))
$$

Considering first the + sign gives a solution

$$
z_{1}=2^{1 / 4}(\cos (\pi / 8)+i \sin (\pi / 8))
$$

and a second solution

$$
z_{2}=-z_{1}
$$

Now considering the - sign gives the third solution

$$
z_{3}=2^{1 / 4}(\cos (-\pi / 8)+i \sin (-\pi / 8))
$$

and a fourth solution

$$
z_{4}=-z_{3}
$$

3. (3 points) Let P be a polynomial with solely real or solely imaginary coefficients. Show that if

$$
P(z)=0
$$

for a complex number z, then it follows that

$$
P(\bar{z})=0
$$

Solution: First, assume that the polynomial has solely real coefficients. Then, as covered in class, $P(\bar{z})=\overline{P(z)}$ (it is an important condition that P is a real polynomial, it does not hold otherwise). Thus, if $P(z)=0$, then $\overline{P(z)}=0$ and so $P(\bar{z})=0$.
Now assume that P is a polynomial with solely imaginary coefficients. Then

$$
\begin{aligned}
P(z) & =i b_{n} z^{n}+i b_{n-1} z^{n-1}+\cdots+i b_{0} \\
& =i\left(b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}\right)
\end{aligned}
$$

Thus, if $Q(z)=-i P(z)$. Then $Q(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}$ is a real polynomial. We just showed that if Q is a real polynomial and $Q(z)=0$, then $Q(\bar{z})=0$. So, if $P(z)=0$ then $Q(z)=0$ and so $Q(\bar{z})=0$ and thus again $P(\bar{z})=0$, solving the problem.
4. (3 points)

Consider the vectors

$$
\begin{aligned}
\vec{u} & =(2,2,1) \\
\vec{v} & =\left(-\pi,-\pi,-\frac{\pi}{2}\right) \\
\vec{w} & =(1,0,1)
\end{aligned}
$$

(a) Are any of the vectors parallell? If so, which?

Solution: Observe that $\vec{v}=\frac{\pi}{2} \vec{u}$. Thus \vec{u} and \vec{v} are parallell. However \vec{u} and \vec{w} are not parallell, because if

$$
\vec{u}=t \vec{w}
$$

for some $t \in \mathbb{R}$, then considering the second entry of the vector, we would have

$$
2=t 0=0
$$

This is false for all t, so we conclude that \vec{u} and \vec{v} are not parallell. Since \vec{v} and \vec{u} are parallell, it also follows that \vec{v} and \vec{w} are not parallell.
(b) Are any of the vectors orthogonal? If so, which?

Solution: Observe that

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =-9 \pi / 2, \\
\vec{u} \cdot \vec{w} & =3, \\
\vec{v} \cdot \vec{w} & =-3 \pi / 2 .
\end{aligned}
$$

All of the above are unequal to zero, so none of the vectors are orthogonal.
(c) What is the angle between each pair of vectors?

Solution: Although \vec{u} and \vec{v} are parallell, they point in the opposite directions and the angle between them is π. Now $\|\vec{u}\|=3$ and $\|\vec{w}\|=\sqrt{2}$ so since $\vec{u} \cdot \vec{w}=3$ we obtain that

$$
\frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\|\|\vec{w}\|}=1 / \sqrt{2}
$$

and thus, if θ is the angle between \vec{u} and \vec{w} then $\cos \theta=1 / \sqrt{2}$. Now since $\cos (\pi / 4)=$ $1 / \sqrt{2}$, it follows that the angle between \vec{u} and \vec{w} is $\pi / 4$.
Now since \vec{v} and \vec{w} point in the opposite directions, that the angle between \vec{v} and \vec{w} is $\pi-\pi / 4=3 \pi / 4$.
5. (3 points) Let L be the line in \mathbb{R}^{2} which passes through the points $(0,1)$ and $(2,2)$.
(a) Write the line L in parameterform.

Solution: Since $(2,2)-(0,1)=(2,1)$ is parallell to the line and since $(0,1)$ is a point on the line it follows that L is given by

$$
(2 t, 1+t), \quad t \in \mathbb{R} .
$$

Any alternative parameter description will do, e.g. L is the set of points $(x, y) \in \mathbb{R}^{2}$ satisfying

$$
(x, y)=t(2,1)+(0,1),
$$

for $t \in \mathbb{R}$.
(b) What is the distance between the line L and the point $(3,0)$? (Here, we mean the distance between $(3,0)$ and the closest point on the line L.)
Solution: If $P=\left(P_{1}, P_{2}\right)$ is the point in L which is closest to $(3,0)$ then $(3,0)-P$ will be perpendicular to the line L, and thus orthogonal to $(2,1)$. Observe that $(1,-2)$ is orthogonal to $(2,1)$ and so P is the (unique) intersection of L and the line

$$
(3,0)+s(1,-2), \quad s \in \mathbb{R} .
$$

Observe that the point $(2,2)$ is in both lines (with $t=1$ and $s=-1$), and so $P=(2,2)$. The distance from $(3,0)$ to $(2,2)$ is $\sqrt{5}$ and so $\sqrt{5}$ is the solution.

