Coursework 3

Upload your solutions to Canvas at the latest 23:59 the 11th of October 2022.

Properly motivate your answers where suitable!

1. (3 points)

Assume that a function $f:(0,\infty)\to\mathbb{R}$ satisfies

$$f(xy) = f(x) + f(y), \tag{1}$$

and that

$$f(x) > 0, (2)$$

for all x > 1, and that

$$f(x) < 0, (3)$$

for all x < 1. Prove that f is a (strictly) monotone increasing function.

Comment: Since the function

$$f(x) = \log(x)$$

satisfies these criteria, we have proven that log is a (strictly) monotone increasing function!

Solution: Assume that b > a. Then $f(b) = f\left(a\frac{b}{a}\right)$. Setting x = a and $y = \frac{b}{a}$ in (1), it follows that

$$f(b) = f(a) + f\left(\frac{b}{a}\right). \tag{4}$$

Since b > a > 0, it follows that $\frac{b}{a} > 1$. Thus by (2), $f\left(\frac{b}{a}\right) > 0$. Thus, by (4),

which proves that f is monotone increasing.

2. (3 points)

Find all complex numbers z satisfying

$$z^4 - 2z^2 + 2 = 0.$$

Hint: First write

$$x = z^2$$

and solve for x, subsequently solve for z.

Solution: We first solve for $x = z^2$: The equation

$$x^2 - 2x + 2 = 0$$

has roots

$$x = 1 \pm i$$
.

Thus

$$z^2 = 1 \pm i,$$

SO

$$z^2 = \sqrt{2}(\cos(\pm \pi/4) + i\sin(\pm \pi/4)).$$

Considering first the + sign gives a solution

$$z_1 = 2^{1/4} \left(\cos(\pi/8) + i\sin(\pi/8)\right),$$

and a second solution

$$z_2 = -z_1.$$

Now considering the - sign gives the third solution

$$z_3 = 2^{1/4} \left(\cos(-\pi/8) + i\sin(-\pi/8)\right),$$

and a fourth solution

$$z_4 = -z_3$$
.

3. (3 points) Let P be a polynomial with solely real or solely imaginary coefficients. Show that if

$$P(z) = 0$$

for a complex number z, then it follows that

$$P(\overline{z}) = 0.$$

Solution: First, assume that the polynomial has solely real coefficients. Then, as covered in class, $P(\overline{z}) = \overline{P(z)}$ (it is an important condition that P is a real polynomial, it does not hold otherwise). Thus, if P(z) = 0, then $\overline{P(z)} = 0$ and so $P(\overline{z}) = 0$.

Now assume that P is a polynomial with solely imaginary coefficients. Then

$$P(z) = ib_n z^n + ib_{n-1} z^{n-1} + \dots + ib_0$$

= $i(b_n z^n + b_{n-1} z^{n-1} + \dots + b_0).$

Thus, if Q(z) = -iP(z). Then $Q(z) = b_n z^n + b_{n-1} z^{n-1} + \cdots + b_0$ is a real polynomial. We just showed that if Q is a real polynomial and Q(z) = 0, then $Q(\overline{z}) = 0$. So, if P(z) = 0 then Q(z) = 0 and so $Q(\overline{z}) = 0$ and thus again $P(\overline{z}) = 0$, solving the problem.

4. (3 points)

Consider the vectors

$$\vec{u} = (2, 2, 1),$$

 $\vec{v} = \left(-\pi, -\pi, -\frac{\pi}{2}\right),$
 $\vec{w} = (1, 0, 1).$

(a) Are any of the vectors parallell? If so, which?

Solution: Observe that $\vec{v} = \frac{\pi}{2}\vec{u}$. Thus \vec{u} and \vec{v} are parallell. However \vec{u} and \vec{w} are not parallell, because if

$$\vec{u} = t\vec{w}$$

for some $t \in \mathbb{R}$, then considering the second entry of the vector, we would have

$$2 = t0 = 0.$$

This is false for all t, so we conclude that \vec{u} and \vec{v} are not parallell. Since \vec{v} and \vec{u} are parallell, it also follows that \vec{v} and \vec{w} are not parallell.

(b) Are any of the vectors orthogonal? If so, which?

Solution: Observe that

$$\vec{u} \cdot \vec{v} = -9\pi/2,$$

$$\vec{u} \cdot \vec{w} = 3,$$

$$\vec{v} \cdot \vec{w} = -3\pi/2.$$

All of the above are unequal to zero, so none of the vectors are orthogonal.

(c) What is the angle between each pair of vectors?

Solution: Although \vec{u} and \vec{v} are parallell, they point in the opposite directions and the angle between them is π . Now $||\vec{u}|| = 3$ and $||\vec{w}|| = \sqrt{2}$ so since $\vec{u} \cdot \vec{w} = 3$ we obtain that

$$\frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\| \|\vec{w}\|} = 1/\sqrt{2}$$

and thus, if θ is the angle between \vec{u} and \vec{w} then $\cos \theta = 1/\sqrt{2}$. Now since $\cos(\pi/4) = 1/\sqrt{2}$, it follows that the angle between \vec{u} and \vec{w} is $\pi/4$.

Now since \vec{v} and \vec{w} point in the opposite directions, that the angle between \vec{v} and \vec{w} is $\pi - \pi/4 = 3\pi/4$.

5. (3 points) Let L be the line in \mathbb{R}^2 which passes through the points (0,1) and (2,2).

(a) Write the line L in parameter form.

Solution: Since (2,2)-(0,1)=(2,1) is parallell to the line and since (0,1) is a point on the line it follows that L is given by

$$(2t, 1+t), t \in \mathbb{R}.$$

Any alternative parameter description will do, e.g. L is the set of points $(x,y) \in \mathbb{R}^2$ satisfying

$$(x,y) = t(2,1) + (0,1),$$

for $t \in \mathbb{R}$.

(b) What is the distance between the line L and the point (3,0)?

(Here, we mean the distance between (3,0) and the closest point on the line L.)

Solution: If $P = (P_1, P_2)$ is the point in L which is closest to (3,0) then (3,0) - P will be perpendicular to the line L, and thus orthogonal to (2,1). Observe that (1,-2) is orthogonal to (2,1) and so P is the (unique) intersection of L and the line

$$(3,0) + s(1,-2), \quad s \in \mathbb{R}.$$

Observe that the point (2,2) is in both lines (with t=1 and s=-1), and so P=(2,2). The distance from (3,0) to (2,2) is $\sqrt{5}$ and so $\sqrt{5}$ is the solution.