Problem sheet 15

(1) Find a vector orthogonal to both $(2,1,0)$ and $(4,3,-1)$.
(2) What is the area of the triangle in \mathbb{R}^{3} with vertices $(2,1,4),(2,1,1)$ and $(0,4,1)$?
(3) Prove that $u \cdot(u \times v)=0$.
(4) Find all pairs \vec{u} and \vec{v} satisfying $\vec{u} \times(\vec{u} \times \vec{v})=\vec{v}$.
(5) Find all pairs \vec{u} and \vec{v} satisfying $\vec{u} \times(\vec{v} \times \vec{u})=\vec{v}$.
(6) Find the equation of the plane passing through the points $(3,4,1),(6,1,1)$ and ($2,3,1$).
(7) Let S be the plane given by

$$
\begin{equation*}
t \vec{u}+s \vec{v}+\vec{P}, \quad t, s \in \mathbb{R} \tag{1}
\end{equation*}
$$

where \vec{u} and \vec{v} are vectors and \vec{P} is a point in the plane. Why is an alternative description for the plane S, the points (x, y, z) satisfying

$$
\begin{equation*}
(\vec{u} \times \vec{v}) \cdot((x, y, z)-\vec{P})=0 ? \tag{2}
\end{equation*}
$$

