Problem sheet 15

- (1) Find a vector orthogonal to both (2, 1, 0) and (4, 3, -1).
- (2) What is the area of the triangle in \mathbb{R}^3 with vertices (2,1,4), (2,1,1) and (0,4,1)?
- (3) Prove that $u \cdot (u \times v) = 0$.
- (4) Find all pairs \vec{u} and \vec{v} satisfying $\vec{u} \times (\vec{u} \times \vec{v}) = \vec{v}$.
- (5) Find all pairs \vec{u} and \vec{v} satisfying $\vec{u} \times (\vec{v} \times \vec{u}) = \vec{v}$.
- (6) Find the equation of the plane passing through the points (3,4,1), (6,1,1) and (2,3,1).
- (7) Let S be the plane given by

$$t\vec{u} + s\vec{v} + \vec{P}, \qquad t, s \in \mathbb{R},$$
 (1) {?}

where \vec{u} and \vec{v} are vectors and \vec{P} is a point in the plane. Why is an alternative description for the plane S, the points (x, y, z) satisfying

$$(\vec{u} \times \vec{v}) \cdot \left((x, y, z) - \vec{P} \right) = 0? \tag{2}$$