## Problem sheet 11

- (1) Find the parametric equation for the line L which passes through (1,2) and (2,3).
- (2) Find the parametric equation for each of the lines  $L_1$ ,  $L_2$ ,  $L_3$ ,  $L_4$  which all pass through (1, 1, 1), and additionally
  - $-L_1$  passes through the origin.
  - $L_2$  passes through (0,0,1).
  - $L_3$  passes through (0,1,1).
- (3) Write the parameter form of the line L passing through the two points (5,4,3) and (5,6,7). Find two vectors  $\vec{v}$  and  $\vec{w}$  which are perpendicular to L (and which are not parallel to each other). Give a parametric equation for the plane passing through the origin such that L is perpendicular to the plane.
- (4) Give an equation of the form  $A(x x_0) + B(y y_0) + C(z z_0) = 0$  for points (x, y, z) in the plane with normal  $\vec{n} = (2, 5, 1)$  passing through (2, 2, 2).
- (5) Two planes  $S_1$  and  $S_2$  both have the same normal vector  $\vec{n} = (4, 1, 8)$ . The point (2, 2, 2) is in  $S_1$  and the point (1, -2, 3) is in  $S_2$ . Are  $S_1$  and  $S_2$  the same plane?
- (6) Find an equation for the plane that is parallellel to the plane 3x+2y-z=1 and passes through the point (1,1,1).
- (7) Let  $L_1$  be the line in  $\mathbb{R}^2$  given by 7y + x = 4 and  $L_2$  be the line 8y + x = 7. What is the angle between  $L_1$  and  $L_2$ ?