Problem sheet 11

(1) Find the parametric equation for the line L which passes through (1,2) and (2,3).
(2) Find the parametric equation for each of the lines $L_{1}, L_{2}, L_{3}, L_{4}$ which all pass through $(1,1,1)$, and additionally

- L_{1} passes through the origin.
- L_{2} passes through $(0,0,1)$.
- L_{3} passes through $(0,1,1)$.
(3) Write the parameter form of the line L passing through the two points $(5,4,3)$ and $(5,6,7)$. Find two vectors \vec{v} and \vec{w} which are perpendicular to L (and which are not paralell to each other). Give a parametric equation for the plane passing through the origin such that L is perpendicular to the plane.
(4) Give an equation of the form $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$ for points (x, y, z) in the plane with normal $\vec{n}=(2,5,1)$ passing through $(2,2,2)$.
(5) Two planes S_{1} and S_{2} both have the same normal vector $\vec{n}=(4,1,8)$. The point $(2,2,2)$ is in S_{1} and the point $(1,-2,3)$ is in S_{2}. Are S_{1} and S_{2} the same plane?
(6) Find an equation for the plane that is paralellel to the plane $3 x+2 y-z=1$ and passes through the point $(1,1,1)$.
(7) Let L_{1} be the line in \mathbb{R}^{2} given by $7 y+x=4$ and L_{2} be the line $8 y+x=7$. What is the angle between L_{1} and L_{2} ?

