Problem sheet 11

- (1) Let $\overrightarrow{u} = (1,1)$ and $\overrightarrow{v} = (-1,1)$. Draw the following vectors with their initial points at the origin:
 - (a) $2\overrightarrow{u}$.
 - (b) $\overrightarrow{u} + \overrightarrow{v}$.
 - (c) $\overrightarrow{u} \overrightarrow{v}$.
 - (d) $\overrightarrow{u} + 2\overrightarrow{v}$.
- (2) Given points P and Q in \mathbb{R}^2 , denote by \overrightarrow{PQ} the vector from Q to P. What are the components of \overrightarrow{PQ} in the following examples?
 - (a) P = (1, 5) and Q = (4, 1).
 - (b) P = (0,0,4) and Q = (2,3,0).
- (3) Find the components of \overrightarrow{w} satisfying

$$2\overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w} = 7\overrightarrow{w} + \overrightarrow{y},$$

where $\vec{u} = (-3, 1, 2), \ \vec{v} = (4, 0, -8), \ \text{and} \ \vec{y} = (6, -1, -4).$

- (4) Let $\overrightarrow{u} = (2, -2, 3)$ and let $\overrightarrow{v} = (1, -3, 4)$. Compute the following norms
 - (a) $\|\overrightarrow{u} + \overrightarrow{v}\|$.
 - (b) $\|\overrightarrow{u} 3\overrightarrow{v}\|$.
 - (c) $\|\overrightarrow{u}\| 3\|\overrightarrow{v}\|$.
- (5) In the following examples, find $\overrightarrow{u} \cdot \overrightarrow{v}$
 - (a) $\vec{u} = (3, 1, 4)$ and $\vec{v} = (2, 2, -4)$.
 - (b) $\vec{u} = (1, 1, 4)$ and $\vec{v} = (2, -2, 3)$.
- (6) Let \vec{a} and \vec{b} be vectors in \mathbb{R}^2 , with lengths 9 and 5 respectively. Let b point in the negative y direction and let x make an angle $2\pi/3$ in the counterclockwise direction with the positive x-axis. What is $\vec{a} \cdot \vec{b}$?
- (7) Let \vec{a} and \vec{b} be vectors in \mathbb{R}^3 . Which of the following statements make mathematical sense? Why / why not?
 - (a) $(\vec{a} \cdot \vec{b})\vec{b}$.
 - (b) $(\vec{a} \cdot \vec{b})\vec{b}$.
 - (c) $\|\vec{a} + \vec{b}\|\vec{a}$.
 - (d) $(\vec{a} + \vec{b})\vec{a}$.
- (8) What is the angle between \vec{v} and \vec{w} if $\vec{v} = (2, 3, 4)$ and $\vec{w} = (3, 4, 5)$? What is the angle between \vec{v} and $-\vec{w}$?