Problem sheet 11

(1) Let $\vec{u}=(1,1)$ and $\vec{v}=(-1,1)$. Draw the following vectors with their initial points at the origin:
(a) $2 \vec{u}$.
(b) $\vec{u}+\vec{v}$.
(c) $\vec{u}-\vec{v}$.
(d) $\vec{u}+2 \vec{v}$.
(2) Given points P and Q in \mathbb{R}^{2}, denote by $\overrightarrow{P Q}$ the vector from Q to P. What are the components of $\overrightarrow{P Q}$ in the following examples?
(a) $P=(1,5)$ and $Q=(4,1)$.
(b) $P=(0,0,4)$ and $Q=(2,3,0)$.
(3) Find the components of \vec{w} satisfying

$$
2 \vec{u}-\vec{v}+\vec{w}=7 \vec{w}+\vec{y}
$$

where $\vec{u}=(-3,1,2), \vec{v}=(4,0,-8)$, and $\vec{y}=(6,-1,-4)$.
(4) Let $\vec{u}=(2,-2,3)$ and let $\vec{v}=(1,-3,4)$. Compute the following norms
(a) $\|\vec{u}+\vec{v}\|$.
(b) $\|\vec{u}-3 \vec{v}\|$.
(c) $\|\vec{u}\|-3\|\vec{v}\|$.
(5) In the following examples, find $\vec{u} \cdot \vec{v}$
(a) $\vec{u}=(3,1,4)$ and $\vec{v}=(2,2,-4)$.
(b) $\vec{u}=(1,1,4)$ and $\vec{v}=(2,-2,3)$.
(6) Let \vec{a} and \vec{b} be vectors in \mathbb{R}^{2}, with lengths 9 and 5 respectively. Let b point in the negative y direction and let x make an angle $2 \pi / 3$ in the counterclockwise direction with the positive x-axis. What is $\vec{a} \cdot \vec{b}$?
(7) Let \vec{a} and \vec{b} be vectors in \mathbb{R}^{3}. Which of the following statements make mathematical sense? Why / why not?
(a) $(\vec{a} \cdot \vec{b}) \vec{b}$.
(b) $(\vec{a} \cdot \vec{b}) \vec{b}$.
(c) $\|\vec{a}+\vec{b}\| \vec{a}$.
(d) $(\vec{a}+\vec{b}) \vec{a}$.
(8) What is the angle between \vec{v} and \vec{w} if $\vec{v}=(2,3,4)$ and $\vec{w}=(3,4,5)$? What is the angle between \vec{v} and $-\vec{w}$?

