#### Solutions - Coursework 2

Upload your solutions to Canvas at the latest 23:59 the 26th of September 2022.

Properly motivate your answers where suitable!

## 1. (3 points)

Observe that x = 1 is a root of the equation

$$x^3 + ax^2 - ax - 1 = 0, (1)$$

for all real numbers a. The Fundamental Theorem of Algebra combined with the factor theorem guarantees that the equation has exactly 3 roots (when counting multiplicities). For which real numbers a are the other two roots real?

**Solution:** Since x = 1 is a root, it follows by the factor theorem that the polynomial on the left-hand side must have the form

$$(x-1)(x^2+bx+c) (2)$$

for some real constants b and c. Now (2) equals

$$x^{3} + x^{2}(b-1) + x(c-b) - c. (3)$$

Matching the coefficient of the  $x^2$  term in (3) with the  $x^2$  term of (1), it follows that

$$a = (b-1). (4)$$

Similarly matching coefficients of the constant term yields

$$c = 1 \tag{5}$$

Thus (1) becomes

$$(x-1)(x^2 + (a+1)x + 1). (6)$$

The roots of  $x^2 + (a+1)x + 1$  are given by

$$\frac{-a-1\pm\sqrt{(a+1)^2-4}}{2}. (7)$$

Thus these are the other roots of (1), and they are real if and only if

$$(a+1)^2 - 4 \ge 0.$$

Since

$$(a+1)^2 - 4 = (a+3)(a-1),$$

we need to solve

$$(a+3)(a-1) \ge 0. (8)$$

This is solved by

$$a \in (-\infty, -3] \cup [1, \infty), \tag{9}$$

which is also the region for which the remaining roots of (1) are real.

## 2. (3 points)

Compute

$$\sin\left(\frac{\pi}{12}\right)$$
?

Present your entire solution!

Hint: You may rely on the values we obtained for

$$\sin\left(\frac{\pi}{3}\right)$$
,  $\cos\left(\frac{\pi}{3}\right)$ ,  $\sin\left(\frac{\pi}{4}\right)$ , and  $\cos\left(\frac{\pi}{4}\right)$ 

in class.

Solution: Observe that

$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}.$$

Thus

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right).$$

Since

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

we obtain

$$\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{3}\right)\cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right). \tag{10}$$

We have  $\sin(-x) = -\sin x$  and  $\cos(-x) = \cos x$ , and also

$$\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \text{and} \quad \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}.$$

So we obtain

$$\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\sqrt{3} - 1}{2\sqrt{2}}.$$

#### 3. (3 points)

Let

$$f(x) = \sin^4\left(\frac{1}{1+x}\right).$$

What is the domain and range of f?

**Solution:** First consider the domain. The domain  $\frac{1}{1+x}$  is  $\mathbb{R} \setminus \{-1\}$ . Since  $\sin^4$  has domain  $\mathbb{R}$ , it follows that the domain of f is the same as the domain of  $\frac{1}{1+x}$ , namely  $\mathbb{R} \setminus \{-1\}$ .

Now consider the range. The range of  $\sin^4$  is [0,1], and since the range of  $\frac{1}{1+x}$  is  $\mathbb{R} \setminus \{0\}$ , we know that (0,1] is in the range of f, the only question is whether 0 is in the range as well. Note that  $\pi$  is in the range of  $\frac{1}{1+x}$  and  $\sin \pi = 0$ , so 0 is also in the range of f.

## 4. (3 points)

Consider the polynomial

$$p(x) = x^2 - 3x + 2$$

with domain

$$D = \left[\frac{3}{2}, \infty\right).$$

(a) Prove that p is injective.

Hint: note that

$$x^{2} - 3x + 2 = \left(x - \frac{3}{2}\right)^{2} - \frac{1}{4}.$$

**Solution:** We will show that p is (strictly) monotone increasing, from which it follows that p is injective. If  $b > a \ge 3/2$ , then b = a + c for some c > 0, and

$$p(b) - p(a) = \left(a + c - \frac{3}{2}\right)^2 - \left(a - \frac{3}{2}\right)^2$$
$$= c^2 + 2ac - 3c.$$

Since  $a \ge 3/2$  it follows that  $2ac - 3c \ge 0$ , and since c > 0 we also have  $c^2 > 0$ . Thus p(b) - p(a) > 0 on  $[3/2, \infty)$ .

(b) What is the range of p?

**Solution:** The range of  $\left(x-\frac{3}{2}\right)^2$  is  $[0,\infty)$ . If we subtract 1/4, then the resulting range is  $[-1/4,\infty)$ , which is the range of p.

(c) Denote the range of p by R. Sketch the graph of the inverse function

$$p^{-1}: R \to D.$$



Solution:

5. (3 points)

Let

$$g:\left[0,\frac{\pi}{2}\right]\to [0,1]$$

be given by

$$g(x) = \sin^2(x).$$

(a) Prove that g is invertible.

**Hint:** You may rely on the fact that the sine function is injective on the interval  $\left[0, \frac{\pi}{2}\right]$ .

**Solution:** If  $a \neq b$ , then since sin is injective on  $\left[0, \frac{\pi}{2}\right]$ , it follows that  $\sin a \neq \sin b$ . Since sin is positive on this interval, it follows that  $(\sin a)^2 \neq (\sin b)^2$ . Thus g is injective.

Since  $\sin^2(x)$  is a continuous increasing function between 0 and 1 it follows that it takes all the values between 0 and 1, and thus the range is [0,1]. Since the range equals the codomain, it is surjective.

Since g is both injective and surjective, it follows that it is bijective and thus invertible.

# (b) Find a simple formula for the function

$$g^{-1}\left(\sin^2(x)\right),\,$$

defined for all

$$x \in \left[-\pi, -\frac{\pi}{2}\right]$$
.

**Solution:** Let  $t \in [0, \pi/2]$ . Then by definition of the inverse,

$$g^{-1}(\sin^2(t)) = t. (11)$$

Now we aim to find  $t \in [0, \pi/2]$  such that  $\sin^2 x = \sin^2 t$ . Then it will follow by (11) that  $g^{-1}(\sin^2 x) = t$ .

Observe that

$$\sin^2(x+\pi) = (-\sin(x))^2 = \sin^2(x). \tag{12}$$

Since  $x + \pi \in [0, \pi/2]$  we obtain (with  $t = x + \pi$  in (11))

$$g^{-1}(\sin^2(x+\pi)) = x + \pi. \tag{13}$$

Thus, by (12) and (13), we obtain

$$g^{-1}(\sin^2(x)) = x + \pi. \tag{14}$$