Solutions - Coursework 2

Upload your solutions to Canvas at the latest 23:59 the 26th of September 2022.
Properly motivate your answers where suitable!

1. (3 points)

Observe that $x=1$ is a root of the equation

$$
\begin{equation*}
x^{3}+a x^{2}-a x-1=0, \tag{1}
\end{equation*}
$$

for all real numbers a. The Fundamental Theorem of Algebra combined with the factor theorem guarantees that the equation has exactly 3 roots (when counting multiplicities). For which real numbers a are the other two roots real?

Solution: Since $x=1$ is a root, it follows by the factor theorem that the polynomial on the left-hand side must have the form

$$
\begin{equation*}
(x-1)\left(x^{2}+b x+c\right) \tag{2}
\end{equation*}
$$

for some real constants b and c. Now (2) equals

$$
\begin{equation*}
x^{3}+x^{2}(b-1)+x(c-b)-c . \tag{3}
\end{equation*}
$$

Matching the coefficient of the x^{2} term in (3) with the x^{2} term of (1), it follows that

$$
\begin{equation*}
a=(b-1) . \tag{4}
\end{equation*}
$$

Similarly matching coefficients of the constant term yields

$$
\begin{equation*}
c=1 \tag{5}
\end{equation*}
$$

Thus (1) becomes

$$
\begin{equation*}
(x-1)\left(x^{2}+(a+1) x+1\right) \tag{6}
\end{equation*}
$$

The roots of $x^{2}+(a+1) x+1$ are given by

$$
\begin{equation*}
\frac{-a-1 \pm \sqrt{(a+1)^{2}-4}}{2} \tag{7}
\end{equation*}
$$

Thus these are the other roots of (1), and they are real if and only if

$$
(a+1)^{2}-4 \geq 0
$$

Since

$$
(a+1)^{2}-4=(a+3)(a-1)
$$

we need to solve

$$
\begin{equation*}
(a+3)(a-1) \geq 0 \tag{8}
\end{equation*}
$$

This is solved by

$$
\begin{equation*}
a \in(-\infty,-3] \cup[1, \infty) \tag{9}
\end{equation*}
$$

which is also the region for which the remaining roots of (1) are real.
2. (3 points)

Compute

$$
\sin \left(\frac{\pi}{12}\right) ?
$$

Present your entire solution!
Hint: You may rely on the values we obtained for

$$
\sin \left(\frac{\pi}{3}\right), \quad \cos \left(\frac{\pi}{3}\right), \quad \sin \left(\frac{\pi}{4}\right), \quad \text { and } \quad \cos \left(\frac{\pi}{4}\right)
$$

in class.
Solution: Observe that

$$
\frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}
$$

Thus

$$
\sin \left(\frac{\pi}{12}\right)=\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)
$$

Since

$$
\sin (x+y)=\sin x \cos y+\cos x \sin y
$$

we obtain

$$
\begin{equation*}
\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{3}\right) \cos \left(-\frac{\pi}{4}\right)+\sin \left(-\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right) \tag{10}
\end{equation*}
$$

We have $\sin (-x)=-\sin x$ and $\cos (-x)=\cos x$, and also

$$
\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, \quad \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}, \quad \text { and } \quad \sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

So we obtain

$$
\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}}
$$

3. (3 points)

Let

$$
f(x)=\sin ^{4}\left(\frac{1}{1+x}\right)
$$

What is the domain and range of f ?
Solution: First consider the domain. The domain $\frac{1}{1+x}$ is $\mathbb{R} \backslash\{-1\}$. Since $\sin ^{4}$ has domain \mathbb{R}, it follows that the domain of f is the same as the domain of $\frac{1}{1+x}$, namely $\mathbb{R} \backslash\{-1\}$.
Now consider the range. The range of $\sin ^{4}$ is $[0,1]$, and since the range of $\frac{1}{1+x}$ is $\mathbb{R} \backslash\{0\}$, we know that $(0,1]$ is in the range of f, the only question is whether 0 is in the range as well. Note that π is in the range of $\frac{1}{1+x}$ and $\sin \pi=0$, so 0 is also in the range of f.
4. (3 points)

Consider the polynomial

$$
p(x)=x^{2}-3 x+2
$$

with domain

$$
D=\left[\frac{3}{2}, \infty\right)
$$

(a) Prove that p is injective.

Hint: note that

$$
x^{2}-3 x+2=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}
$$

Solution: We will show that p is (strictly) monotone increasing, from which it follows that p is injective. If $b>a \geq 3 / 2$, then $b=a+c$ for some $c>0$, and

$$
\begin{aligned}
p(b)-p(a) & =\left(a+c-\frac{3}{2}\right)^{2}-\left(a-\frac{3}{2}\right)^{2} \\
& =c^{2}+2 a c-3 c
\end{aligned}
$$

Since $a \geq 3 / 2$ it follows that $2 a c-3 c \geq 0$, and since $c>0$ we also have $c^{2}>0$. Thus $p(b)-p(a)>0$ on $[3 / 2, \infty)$.
(b) What is the range of p ?

Solution: The range of $\left(x-\frac{3}{2}\right)^{2}$ is $[0, \infty)$. If we subtract $1 / 4$, then the resulting range is $[-1 / 4, \infty)$, which is the range of p.
(c) Denote the range of p by R. Sketch the graph of the inverse function

$$
p^{-1}: R \rightarrow D
$$

Solution:

5. (3 points)

Let

$$
g:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]
$$

be given by

$$
g(x)=\sin ^{2}(x)
$$

(a) Prove that g is invertible.

Hint: You may rely on the fact that the sine function is injective on the interval $\left[0, \frac{\pi}{2}\right]$.
Solution: If $a \neq b$, then since \sin is injective on $\left[0, \frac{\pi}{2}\right]$, it follows that $\sin a \neq \sin b$. Since \sin is positive on this interval, it follows that $(\sin a)^{2} \neq(\sin b)^{2}$. Thus g is injective.

Since $\sin ^{2}(x)$ is a continuous increasing function between 0 and 1 it follows that it takes all the values between 0 and 1 , and thus the range is $[0,1]$. Since the range equals the codomain, it is surjective.
Since g is both injective and surjective, it follows that it is bijective and thus invertible.
(b) Find a simple formula for the function

$$
g^{-1}\left(\sin ^{2}(x)\right),
$$

defined for all

$$
x \in\left[-\pi,-\frac{\pi}{2}\right] .
$$

Solution: Let $t \in[0, \pi / 2]$. Then by definition of the inverse,

$$
\begin{equation*}
g^{-1}\left(\sin ^{2}(t)\right)=t . \tag{11}
\end{equation*}
$$

Now we aim to find $t \in[0, \pi / 2]$ such that $\sin ^{2} x=\sin ^{2} t$. Then it will follow by (11) that $g^{-1}\left(\sin ^{2} x\right)=t$.
Observe that

$$
\begin{equation*}
\sin ^{2}(x+\pi)=(-\sin (x))^{2}=\sin ^{2}(x) . \tag{12}
\end{equation*}
$$

Since $x+\pi \in[0, \pi / 2]$ we obtain (with $t=x+\pi$ in (11))

$$
\begin{equation*}
g^{-1}\left(\sin ^{2}(x+\pi)\right)=x+\pi \tag{13}
\end{equation*}
$$

Thus, by (12) and (13), we obtain

$$
\begin{equation*}
g^{-1}\left(\sin ^{2}(x)\right)=x+\pi . \tag{14}
\end{equation*}
$$

