Problem sheet 5

(1) Find the roots of the following polynomials
(a) $x^{2}-3 x-10$.
(b) $16 x^{4}-8 x^{2}+1$.
(c) $x^{4}+6 x^{3}+9 x^{2}$.
(d) $x^{5}-x^{4}-16 x+16$.
(e) $x^{9}-4 x^{7}-x^{6}+4 x^{4}$.
(2) What is the domain of $\frac{x^{2}-9}{x^{3}-x}$?
(3) Express $\frac{x^{2}}{x^{2}+5 x+3}$ as $p(x)+\frac{q(x)}{r(x)}$ where the degree of $q(x)$ is less than the degree of $r(x)$.
(4) Express $\frac{x^{4}+x^{2}}{x^{3}+x^{2}+1}$ as $p(x)+\frac{q(x)}{r(x)}$ where the degree of $q(x)$ is less than the degree of $r(x)$.
(5) Express the $x^{4}+x^{2}+1$ as a product of real quadratic polynomials with no real roots.
(6) Show that $x-1$ is a factor of a polynomial P if and only if the sum of the coefficients of P is zero.

