Problem sheet 4

(1) Let $f(x)=\sqrt{1-x}$ and $g(x)=\sqrt{1+x}$. Find the domain of $f+g, f-g, f g, f / g$, and g / f.
(2) If $f(x)=x+5$ and $g(x)=x^{2}-3$, sketch the graphs of $f(g(x))$ and $g \circ f(x)$.
(3) Let $f(x)=(x+1) /(x-1)$ and $g(x)=\operatorname{sgn}(x)$. Find the domain and range of, and provide a sketch of the graph of, the following composite functions:
(a) $f \circ f(x)$.
(b) $f \circ g(x)$.
(c) $g \circ f(x)$.
(d) $g \circ g(x)$.
(4) Sketch the graph of $g(x)= \begin{cases}\sqrt{x} & \text { if } 0 \leq x \leq 1, \\ 2-x & \text { if } 1<x \leq 2 .\end{cases}$
(5) Find the real values of the constants A and B for which the function $F(x)=A x+B$ satisfies
(a) $F \circ F(x)=F(x)$ for all x.
(b) $F \circ F(x)=x$ for all x.
(6) For what values of x is $\lfloor x\rfloor=0$? For what values of x is $\lceil x\rceil=0$?
(7) What real numbers satisfy the equation $\lfloor x\rfloor=\lceil x\rceil$?
(8) True or false: $\lceil-x\rceil=-\lceil x\rceil$?
(9) Sketch the graph of $y=x-\lfloor x\rfloor$.
(10) Sketch the graph of the function

$$
f(x)= \begin{cases}\lfloor x\rfloor & \text { if } x \geq 0 \tag{1}\\ \lceil x\rceil & \text { if } x<0\end{cases}
$$

Why is $f(x)$ called the integer part of x ?
(11) Assume that f is even and g is odd, and the domains of f and g are \mathbb{R}.

