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This week
Gauss’ theorem: 
 Divergence 

o definition
o physical meaning

 The Gauss’ theorem

Stokes’ theorem:
 Curl 

o definition
o physical meaning

 Stokes’ theorem
 The Green’s formula in the plane
 Culf-free fields and scalar potentials
 Solenoidal fields and vector potentials
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Connections with previous and next 
topics

Gauss’ theorem: 
 vector fields
 It can be used to calculate the flux (in some specific cases)
 Applications: in ”Electromagnetic Theory” to calculate the flux of electric

field (i.e. with the Gauss’ law). 

Stokes’ theorem:
 Vector fields
 It can be used to calculate line integrals (in some specific cases).
 Important implication for the conservative fields and the potential
 Applications in ”Electromagnetic Theory” to calculate the magnetic field

(Ampere’s law).



Magnetic monopoles 
do not exist in nature. 

TARGET PROBLEM : the 1st and 2nd equations of Maxwell

 How can we express this 
information for       and    
using the mathematical formalism?

E B
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Let’s consider some ELECTRIC CHARGES and two closed surfaces, S1 and S2

S1 does not contain any charge.
It has no sources and no sinks:
no field lines destroyed and 
no field lines created inside S1 

S2 contains a negative charge (a sink).
The field lines are destroyed inside S2 

1

0
S

E dS⋅ =∫∫

2

0
S

E dS⋅ <∫∫

We want to find: (1) the differential form of the Gauss’ law. 
(i.e. to express the Guass’s law without using integrals)

(2) the corresponding expressions for the magnetic field
• the divergence of a vector field    ,

• the Gauss’s theorem
S V

A dS divAdV⋅ =∫∫ ∫∫∫

A div A

0S

QE dS
ε

⋅ =∫ Gauss’ law    (see the 6th week of this 
course for details or 
“Teoretisk elektroteknik”)
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TARGET PROBLEM: the 1st equation of Maxwell

+

+

--

+

+S2

S1



THE DIVERGENCE (DIVERGENSEN)

DEFINITION

In a Cartesian coordinate system , the divergence of a vector field      is:

yx z
AA AdivA

x y z
∂∂ ∂

≡ + +
∂ ∂ ∂

It is a measure of how much the field diverges (or converges) from (to) a point.

(1)

A
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THE DIVERGENCE (DIVERGENSEN)
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EXAMPLE:
 Assume that       is the velocity field of a gas.A
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pipe with air 
flowing

EXAMPLE:
 Assume that       is the velocity field of a gas.A
 If there is gas flowing out of the pipe, the 

vector field will diverge 
o The position where the gas flows out of the 

pipe is a source of the vector field
o In this case, we will see that the divergence is 

positive
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pipe with air 
flowing

EXAMPLE:
 Assume that       is the velocity field of a gas.A
 If there is gas flowing out of the pipe, the 

vector field will diverge 
o The position where the gas flows out of the 

pipe is a source of the vector field
o In this case, we will see that the divergence is 

positive

The divergence is a measure of the strength of sources and sinks.
(This is only “intuitive”. From a formal point of view, this statement will be clear using the Gauss’ theorem)

 If the pipe sucks gas, we will have gas flowing 
in the pipe and the vector field will converge 
o The position where the gas flows in the pipe is a 

sink of the vector field
o In this case, we will see that the divergence is 

negative



Sp

THE GAUSS’ THEOREM

S V

A dS divAdV⋅ =∫∫ ∫∫∫
where S is a closed surface that forms the boundary of the volume V 
and      is a continuously differentiable vector field defined on V.

(2)

A
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x

y

z

dx
dy

S1

S2

z=f2(x,y)

z=f1(x,y)

V

S

2n̂ 2dS

1̂n 1dS

2 2 2

1 1 1

ˆ ˆ ˆ
ˆ ˆ ˆ

z z

z z

dxdy dS n e dS e
dxdy dS n e dS e

= ⋅ = ⋅

= − ⋅ = − ⋅



THE GAUSS’ THEOREM

PROOF
yx z

V V

yx z

V V V

AA AdivAdV dxdydz
x y z

AA Adxdydz dxdydz dxdydz
x y z

∂ ∂ ∂
= + + = ∂ ∂ ∂ 

∂∂ ∂
+ +

∂ ∂ ∂

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫ ∫∫∫

Let’s calculate the  last term:

[ ]
2

1

( , )

2 1
( , )

( , , ( , )) ( , , ( , ))
p p

f x y
z z

z z
V S f x y S

A Adxdydz dxdy dz A x y f x y A x y f x y dxdy
z z

∂ ∂
= = − =

∂ ∂∫∫∫ ∫∫ ∫ ∫∫
dxdy is the projection on Sp of the small element surfaces on dS1 and dS2.

Therefore: 1 1 2 2ˆ ˆ ˆ ˆz zdxdy e n dS e n dS= − ⋅ = ⋅

2 1

2 2 2 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ( , , ( , )) ( , , ( , ))z z z z z z
S S S

A x y f x y e n dS A x y f x y e n dS A e ndS= ⋅ + ⋅ = ⋅∫∫ ∫∫ ∫∫

ˆ ˆz
z z

V S

A dV A e ndS
z

∂
= ⋅

∂∫∫∫ ∫∫Which means: (3)

11



ˆ ˆ

ˆ ˆ

x
x x

V S

y
y y

V S

A dV A e ndS
x
A

dV A e ndS
y

∂
= ⋅

∂

∂
= ⋅

∂

∫∫∫ ∫∫

∫∫∫ ∫∫

THE GAUSS’ THEOREM

PROOF
In the same way we get:

(4)

(5)

Adding together equations (3), (4) and (5) we finally obtain:

ˆ ˆ ˆ ˆ ˆ ˆ

yx z

V V V V

x x y y z z
S S S S

AA AdivAdV dxdydz dxdydz dxdydz
x y z

A e ndS A e ndS A e ndS A dS

∂∂ ∂
= + + =

∂ ∂ ∂

⋅ + ⋅ + ⋅ = ⋅

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫ ∫∫ ∫∫
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1 - Consider a closed surface.

Rearrange in logic order the steps to prove the Gauss’ theorem
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1 - Consider a closed surface.

Rearrange in logic order the steps to prove the Gauss’ theorem
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THE GAUSS’ THEOREM

PROOF

x

y

z

What if we consider a more complicated volume?

V

V1

V2

We divide the volume V
in smaller and “simpler” volumes

i

i

iV V

i S S

divAdV divAdV

A dS A dS

= =

⋅ = ⋅

∑∫∫∫ ∫∫∫

∑∫∫ ∫∫

1 2 ... i
i

V V V V= + + =∑
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PHYSICAL MEANING

Suppose that          is the velocity field of a gas

Let’s apply the Gauss’ theorem to a volume V of the gas

( )v r

If there are no sinks and no sources:
the amount of gas that flows inwards through 
a closed surface S is equal to the amount of gas 
that flows outwards. 

This implies that the flow                is zero.
Therefore, S

v dS⋅∫∫
( ) 0div v =

This term is the gas volume per second [m3/s]
that flows outwards (or inwards) through a closed surface S 

16

( )
S V

v dS div v dV⋅ =∫∫ ∫∫∫
S



TARGET PROBLEM

Magnetic monopoles do not exists  ⇒ the flux of B is zero

Let’s apply the Gauss’ theorem to the magnetic field:

0
S

B dS⋅ =∫∫

S V

B dS divBdV⋅ =∫∫ ∫∫∫Gauss

One of the four 
Maxwell’s
equations

0divB =

Magnetic monopoles do not exist in nature. 
How can this statement be mathematically expressed?

Exercise: apply the Gauss’ theorem 

to the Gauss’ law:

where S is a closed surface and Q the total charge inside S.
Tip: Q is related to the charge density ρc via

0
S

QE dS
ε

⋅ =∫∫

cV
Q dVρ= ∫

17



WHICH STATEMENT IS WRONG?

1- The divergence of a vector field is a scalar

2- The divergence is related to the flux

3- The Gauss’ theorem translates a surface integral 
into a volume integral

4- The Gauss’ theorem can be applied also to an open 
surface

18



VEKTORANALYS

CURL (ROTATIONEN)
and 

STOKES’ THEOREM
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THE CURRENT DENSITY

(in stationary condition) 
See the “Teoretisk elektroteknik” course.

One of the main properties of electromagnetism is that a current density
produces a magnetic field . The current density and the magnetic field are
related via the 4th Maxwell’s equation:

B
j

20

0rotB jµ=
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One of the main properties of electromagnetism is that a current density
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B
j

21

0rotB jµ=

IIj
S

=

dIj
dS

=

S

S

I j dS= ⋅∫∫

dS

dI



TARGET PROBLEM

We need:

(1)  the definition of “curl” (or rotor) of a vector field:

(2) the Stokes’ theorem

rot A

L S

A dr rotA dS⋅ = ⋅∫ ∫∫

22

0

S

rotB j

I j dS

µ =

 = ⋅

∫∫
(4th Maxwell’s equation in stationary conditions)

I



THE CURL (ROTATIONEN) rot A

DEFINITION (in a Cartesian coordinate system)

ˆ ˆ ˆ

, ,

x y z

y yx xz z

x y z

e e e
A AA AA ArotA

x y z y z z x x y
A A A

∂ ∂ ∂ ∂∂ ∂∂ ∂ ∂
= = − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

rot stands for “rotation”
In fact, the curl is a measure of how much the direction of a vector field 
changes in space, i.e. how much the field “rotates”.

In every point of the space, is a vector whose length and direction 
describe the rotation of the field      .

The direction is the axis of rotation of 
The magnitude is the magnitude of rotation of 

rot A

A
A

A

23



PHYSICAL MEANING

Consider the rotation of a rigid body
around the z-axis.
The position vector of a point P on
located at the distance ρ from the
origin is:

x

y

P
ω

ϕ

r
cos

( , ,0)  with  
sin

x
r x y

y
ρ ϕ
ρ ϕ

=
=  =

If P rotates with constant angular
velocity ω, the angle ϕ is : ϕ(t)=ωt.

The velocity of the point P is:

( )
( )( ) sin ( )

, ,0
( )( ) cos ( )

ρω ω ω
ω ω

ρω ω ω

= = − = −  ⇒ = −
= = =


x

y

dx tv t t y t
dt v y x

dy tv t t x t
dt ˆω ω= ze

( ) cos( )
( ) sin( )

x t t
y t t

ρ ω
ρ ω

=
 =

24

THE CURL rot A



THE CURL

EXAMPLE

( , , ) ( , ,0)v x y z y xω ω= −

Direction:    the direction is the axis of rotation, i.e. perpendicular to 
the plane of the figure
The sign (negative, in this case) is determined by the right-hand rule

Magnitude: the amount of rotation
In this example, it is constant and independent of the position, i.e.
the amount of rotation is the same at any point.

25

rot A

x
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PHYSICAL MEANING

Consider the rotation of a rigid body
around the z-axis.
The position vector of a point P on
located at the distance ρ from the
origin is:

The velocity of the point P is:

( )
( )( ) sin ( )

, ,0
( )( ) cos ( )

x

y

dx tv t t y t
dt v y x

dy tv t t x t
dt

ρω ω ω
ω ω

ρω ω ω

= = − = −  ⇒ = −
= = =


Therefore ( )0,0,2rot v ω=
1
2

rot vω⇒ =

x

y

P
ω

r

( ) cos( )
( ) sin( )

x t t
y t t

ρ ω
ρ ω

=
 =

26

THE CURL rot A

ˆzeω ω=

cos
( , ,0)  with  

sin
x

r x y
y

ρ ϕ
ρ ϕ

=
=  =

If P rotates with constant angular
velocity ω, the angle ϕ is : ϕ(t)=ωt.

ϕ



THE STOKES’ THEOREM

L S

A dr rotA dS⋅ = ⋅∫ ∫∫

y

z

x

n̂S

27
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Si

1.  We divide S in “many” “smaller”
(infinitesimal) surfaces:

THE STOKES’ THEOREM
PROOF

L
y

z

x

S

S3

S1

S2

Si

Si
z

Si
ySi

x

i

i
S S=∑

2. We project Si on:
the xy-plane Si

z
the yz-plane Si

x
the xz-plane Si

y

3. We prove the Stokes‘ theorem on Si
z’

(the only difficult part)

Five steps:

4. We add the results for the projections together 
and we obtain the Stokes‘ theorem on Si

5. We add the results for Si together 
and we obtain the Stokes‘ theorem on S

28



Let’s consider the plane surface Si
z

located in the xy-plane (i.e. z=constant=z0)
with boundary defined by the curve Li

z

THE STOKES’ THEOREM
PROOF

y

z

x

ˆze

Si
z

Li
z

Let’s calculate
i
zL
A dr⋅∫

i
zL
A dr⋅ =∫

Term 3 =0  (z=constant!⇒ dz=0)

Term 1 Term 2 Term 3

L1

L2

y=f(x)

y=g(x)Term 1

0( , , )
i
z

xL
A x y z dx∫

0 0 0( , , ) ( , , ) ( , , )
i
z

x y zL
A x y z dx A x y z dy A x y z dz+ +∫

1 2
0( , , )xL L

A x y z dx
+

= =∫

1 2
0 0( , , ) ( , , )x xL L

A x y z dx A x y z dx+ =∫ ∫
0 0( , ( ), ) ( , ( ), )

b a

x xa b
A x f x z dx A x g x z dx+ =∫ ∫

y
Li

z

xa b

Si
z

29



[ ]0 0 0 0( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ), )
b b b

x x x xa a a
A x f x z dx A x g x z dx A x f x z A x g x z dx= − = − =∫ ∫ ∫

THE STOKES’ THEOREM
PROOF

i
z i

z

y x
L

S

A AA dr dxdy
x y

∂ ∂
⋅ = − ∂ ∂ 

∫ ∫∫
Adding Term 1, Term 2 and Term 3:

It is the z-component of rotA !!
Term 2 0( , , )

i
z i

z

y
yL

S

A
A x y z dx dxdy

x
∂

=
∂∫ ∫∫

In a similar way:

Term 1 0( , , )
i
z i

z

x
xL

S

AA x y z dx dxdy
y

∂
= −

∂∫ ∫∫
Therefore we get:

( ) ( )0
( ) ( )

( , , )
i
z

b f x b g xx x x
a g x a f x

S

A x y z A Adxdy dxdy dxdy
y y y

∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫ ∫∫

30



THE STOKES’ THEOREM

ˆ( ) ( )
i
z i i

z

z z zL
S S

A dr rotA dxdy rotA e dS⋅ = = ⋅∫ ∫∫ ∫∫
So can rewrite it as:

ˆ( )
i
y i

y yL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫
ˆ( )

i
x i

x xL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫

In a similar way we have:
ˆ ˆ ˆz zdxdy e ndS e dS= ⋅ = ⋅

Now let’s add everything together:

i i
y z

ii
xL L LL
A dr A dr A dr A dr⋅ + ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫

Si

Li

Li
z

Li
y

Li
x

31



THE STOKES’ THEOREM

ˆ( ) ( )
i
z i i

z

z z zL
S S

A dr rotA dxdy rotA e dS⋅ = = ⋅∫ ∫∫ ∫∫
So can rewrite it as:

ˆ( )
i
y i

y yL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫
ˆ( )

i
x i

x xL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫

In a similar way we have:
ˆ ˆ ˆz zdxdy e ndS e dS= ⋅ = ⋅

Now let’s add everything together:

i i
y z

ii
xL L LL
A dr A dr A dr A dr⋅ + ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫

Si

Li

Li
z

Li
y

Li
x

ˆ ˆ ˆ( ) ( ) ( )
i i i i

x x y y
S

z z
S S S

rotA e dS rotA e dS rotA e dS rotA dS⋅ + ⋅ + ⋅ = ⋅∫∫ ∫∫ ∫∫ ∫∫
32



THE STOKES’ THEOREM
PROOF

x

L
y

z
S

S3

S1

S2

Si

i
i

L
S

A dr rotA dS⋅ = ⋅∫ ∫∫

Li

iL
i

A dr⋅∑∫

=

L S

A dr rot A d S⋅ = ⋅∫ ∫∫

But we are interested in the whole S.
So we add these small contributions 
altogether:

ii SS

rotA dS rotA dS⋅ = ⋅∑∫∫ ∫∫

L
A dr= ⋅∫

L

33



Rearrange in logic order the steps to prove the Stokes’ theorem

34

1    - Consider a closed path and a surface whose boundary is defined by the closed path.

0( , , )
i
z i

z

x
xL

S

AA x y z dx dxdy
y

∂
= −

∂∫ ∫∫

( )
i
z i

z

zL
S

A dr rotA dxdy⋅ =∫ ∫∫
ˆ( )

i
z i

z zL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫

i
i

L
S

A dr rotA dS⋅ = ⋅∫ ∫∫



Rearrange in logic order the steps to prove the Stokes’ theorem
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1    - Consider a closed path and a surface whose boundary is defined by the closed path.

0( , , )
i
z i

z

x
xL

S

AA x y z dx dxdy
y

∂
= −

∂∫ ∫∫

( )
i
z i

z

zL
S

A dr rotA dxdy⋅ =∫ ∫∫
ˆ( )

i
z i

z zL
S

A dr rotA e dS⋅ = ⋅∫ ∫∫

i
i

L
S

A dr rotA dS⋅ = ⋅∫ ∫∫



TARGET PROBLEM

36

0

S

rotB j

I j dS

µ =

 = ⋅

∫∫

0 0 0
L S S S

B dr rotB dS j dS j dS Iµ µ µ⋅ = ⋅ = ⋅ = ⋅ =∫ ∫∫ ∫∫ ∫∫
4th Maxwell’s equation 
(in stationary condition)Stokes’ theorem

0
L

B dr Iµ⋅ =∫
Ampere’s law

⇒

(4th Maxwell’s equation in stationary conditions)

Using the Ampere’s law:I
B

0
0

00 0 1 1 00 0 0
L

L

B dr NI
NIB

lB dr B l l l l B l

µ
µ

⋅ =
⇒ =

⋅ = + + + = 


∫

∫
Ll0

l1



THE GREEN FORMULA IN THE PLANE

L S

A dr rot A d S⋅ = ⋅∫ ∫∫

( )
D L

Q P dxdy Pdx Qdy
x y

 ∂ ∂
− = + ∂ ∂ 

∫∫ ∫

We can start from Stokes’ theorem

PROOF

( ) ( )x y z x y
L

A dr A dx A dy A dz A dx A dy⋅ = + + = +∫ ∫ ∫
But we are in a plane, 

so we can assume A=(Ax,Ay,0)

ˆ ˆy x
z z

S S

A Arot A d S e e dxdy
x y

∂ ∂
⋅ = − ⋅ ∂ ∂ 

∫∫ ∫∫
=1

ˆ ˆ ˆ

0

x y z

x y

e e e

x y z
A A

∂ ∂ ∂
∂ ∂ ∂

( )y x
x y

D L

A A dxdy A dx A dy
x y

∂ ∂
− = + ∂ ∂ 

∫∫ ∫

which is the Green formula
for P=Ax and Q=Ay

THEOREM (9.2 in the textbook)

37



CURL FREE FIELD AND SCALAR POTENTIAL
(virvelfria fält och skalär potential)

DEFINITION: A vector field is “curl free” if             

⇔ has a scalar potential φ,   

PROOF

(1)

0
L S

A dr rot A d S⋅ = ⋅ =∫ ∫∫
So, if the curl is zero, also the circulation is zero ⇒ then the field is conservative 
and has a scalar potential. See theorems 6.3 and 6.4 in the textbook or the slides of week 2.

(2)

, ,rot A rot grad rot
x y z
φ φ φφ

 ∂ ∂ ∂
= = = ∂ ∂ ∂ 

THEOREM (9.3 in the textbook)

Sometimes called “irrotational”

ˆ ˆ ˆx y ze e e

x y z

x y z
φ φ φ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

0rot A =

A 0rot A =

0rot A = A gradφ=

A gradφ=

, , (0,0,0)
y z z y

φ φ ∂ ∂ ∂ ∂
= − = ∂ ∂ ∂ ∂ 

 

A
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SOLENOIDAL FIELD AND VECTOR POTENTIAL

DEFINITION:  A vector field is called solenoidal if

has a vector potential  if and only if      has divergence zero:   

PROOF

DEFINITION:      is a vector potential of the vector field      if   

(1)  has a vector potential ⇒ ⇒

(2)
Let’s try to find a solution     to the equation 

We start looking for a particular solution A* of this kind:

( )* * *( , , ), ( , , ), 0x yA A x y z A x y z=

THEOREM (9.4 in the book)

B

B

B

B

0divB =

A B rotA=

A

B rotA= ( ) 0divB div rotA= =

0divB =
B rotA=A

0B rotA divB= ⇔ =
B

39



The general solution can be found using :

B=rotΑ

PROOF

Assuming we obtain: 

0

0

0 0

*
*

*
*

* *

( , , ) ( , , ) ( , )

( , , ) ( , , ) ( , )

zy
x y xz

zx
y x yz

z zy yx x
z zz z

A
B A x y z B x y z dz F x y

z
A B A x y z B x y z dz G x y
z

A BA B F GB dz dz B
x y x x y y

∂
− = ⇒ = − +
∂

∂
= ⇒ = +

∂
∂ ∂∂ ∂ ∂ ∂

− = ⇒ − + − − =
∂ ∂ ∂ ∂ ∂ ∂

∫

∫

∫ ∫

But divB=0 ⇒ yx z
BB B

x y z
∂∂ ∂

+ = −
∂ ∂ ∂ 0

z z
zz

B F Gdz B
z x y

∂ ∂ ∂
+ − =

∂ ∂ ∂∫
0( , , ) ( , , )z zB x y z B x y z= −

0( , , )z
F G B x y z
x y

∂ ∂
− =

∂ ∂
⇒

A solution to this equation is:
0

0

( , ) 0

( , ) ( , , )
y

zy

F x y

G x y B x y z dy

=

= − ∫

( )
0 0 0

*
0( , , ) ( , , ) , ( , , ) , 0

z y z

y z xz y z
A B x y z dz B x y z dy B x y z dz= − −∫ ∫ ∫

B=rotΑ

( )* * *0rot A A B B A A grad A A gradψ ψ− = − = ⇒ − = ⇒ = +
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WHICH STATEMENT IS WRONG?

1- The curl of a vector field is a scalar

2- The curl is related to the line integral of a field 
along a closed curve

3- Stokes’ theorem translates a line integral into a    
surface integral

4- The Stokes’ theorem can be applied only to a 
closed curve
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