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Let’s consider a vector in 
Cartesian coordinates: ( )1,2,0v =

x

y

which arrow in the figure
represents best the vector ?

 the red 
 the blue
 the green
 all of them

v

Plot the vector (in a Cartesian coord. sis.)

in the point P
( )1,2,0v =

VECTORS
A vector is a quantity with magnitude and direction

( )2,1,0r =Plot the position vector
(with the components in cartesian coordinates)
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Let’s consider two vectors in 
Cartesian coordinates:

Addition:

Subtraction:

( )
( )

, ,

, ,

x y z

x y z

v v v v

w w w w

=

=

x

y

VECTORS: addition and subtraction

( ), ,x x y y z zv w v w v w v wc = + = + + +
v

w

c

( ), ,

( )
x x y y z zv w v w v wd

d

v w

v w

= − = − − −

= + −

x

y

v

w

w−
( )v w+ −

d
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VECTORS: addition and subtraction
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y
Plot v w+
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VECTORS: addition and subtraction
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VECTORS: addition and subtraction
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VECTORS: addition and subtraction

x

y
Plot v w+

x

y
Plot v w+

v

w

w

v

v w+
v w+

10

v w+
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VECTORS: addition and subtraction
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BASIS VECTORS IN CARTESIAN COORDINATES

x

y

z

( ) ( ) ( )ˆ ˆ ˆ1,0,0 0,1,0 0,0,1x y ze e e= = =

ˆxe

ˆye
ˆze

(2, 4,3)v =Let’s consider the vector in 
Cartesian coordinates:

(2, 4,3) (2,0,0) (0, 4,0) (0,0,3)
ˆ ˆ ˆ2(1,0,0) (0, 4,0) 3(0,0,1) 2 4 3x y z

v
e e e

= = + + =
+ + = + +

v

The basis vectors are vectors of length 1 
and direction along the axes.

In a Cartesian coordinate system, the basis 
vectors are:

ˆ ˆ ˆ(a, b,c) x y zw ae be ce= = + +

In general, any vector can be represented
using the basis vectors of the coordinate
system:

vyv

Exercise:
Use the scalar product and the basis vectors to
express the y-component of a vector :

yv

yv =
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Let’s consider two vectors in Cartesian
coordinates:

Absolute value:

VECTORS: absolute value, scalar product, and cross product

x

y

v

w

α

2 2 2
x y zv v v v= + +

the direction is perpendicular to both
and  the orientation is determined with the right hand rule

andv w

v

w
α

v w×

ˆ ˆ ˆx x y y z zv v e v e v e= + + ˆ ˆ ˆx x y y z zw w e w e w e= + +

2 2 2
x y zv v v v v v= + + = ⋅ the absolute value can be calculated as:

( ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ ˆ

sin

x y z

x y z y z z y x z x x z y x y y x z

x y z

e e e
v w v v v v w v w e v w v w e v w v w e

w w w

v w v w α

× = = − + − + −

× =

Cross product:

cos
x x y y z zc v w v w v w v w

c v w α

= ⋅ = + +

=

cos v w
v w

α ⋅
=

Scalar product:

therefore, 
 the angle between two vectors can be 

calculated from:
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Warning: never write 𝑣̅𝑣2. It is not clear which product you are using



Let’s consider two vectors in Cartesian
coordinates:

VECTORS: projections in the direction of another vector

v

w

α

x

y

z

vw

Exercise:
Prove that

2v
w vw v
v
⋅

=

ˆ ˆ ˆx x y y z zw w e w e w e= + +ˆ ˆ ˆx x y y z zv v e v e v e= + +

You can use the expression 
above to prove that:

ˆ
ˆ
ˆ

x x

y y

z z

a a e
a a e
a a e

= ⋅
= ⋅

= ⋅

w v

ˆcosv vw w eα=

The vector projection of in the direction of
is the vector:

The scalar projection of in the direction of
is the scalar:

w v

cosv
w vw w

v
α ⋅

= =
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Let’s consider two position vectors
that identify two points, P and Q.

The distance between P and Q is the length
L of the vector

,v w

VECTORS: distance between two points

x

y
v

w

α

z

P

Qc v w= −

c
( ) ( )

2 2 2

L c c c v w v w

v v v w w v w w

v w v w

= = ⋅ = − ⋅ − =

= ⋅ − ⋅ − ⋅ + ⋅ =

= + − ⋅

2 2 2L v w v w= + − ⋅
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Warning: never write 𝑣̅𝑣2. It is not clear which product you are using.



CYLINDRICAL COORDINATE SYSTEMS

x

y
A point P can be identified by the coordinates:
x, y, z (Cartesian coordinates)
ρ, φ, z (cylindrical coordinates)

ϕ

ρcos
sin

x
y
z z

ρ ϕ
ρ ϕ

=
 =
 =

P’

P

êρ
êϕ

The direction of the  basis vectors in a 
cylindrical coordinate system  depends on the 
position.

ˆ ˆ ˆcos sin
ˆ ˆ ˆsin cos
ˆ ˆ

x y

x y

z z

e e e
e e e
e e

ρ

ϕ

ϕ ϕ

ϕ ϕ

= +
 = − +
 =

IMPORTANT:The basis vectors in a cylindrical coordinate system are orthonormal:
ˆ ˆ ˆ ˆ ˆ ˆ(cos sin ) ( sin cos ) sin cos sin cos 0
ˆ ˆ ˆ ˆ ˆ(cos sin ) 0
ˆ ˆ ˆ ˆ ˆ( sin cos ) 0

x y x y

z x y z

z x y z

e e e e e e
e e e e e
e e e e e

ρ ϕ

ρ

ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

 ⋅ = + ⋅ − + = − + =


⋅ = + ⋅ =
 ⋅ = − + ⋅ =

ˆ ˆ 1
ˆ ˆ 1
ˆ ˆ 1z z

e e
e e
e e

ρ ρ

ϕ ϕ

⋅ =
 ⋅ =
 ⋅ =

ˆ ˆ ˆ, ,
ˆ ˆ ˆ, ,

x y z

z

e e e
e e eρ ϕ

in the Cartesian coordinate system

in the cylindrical coordinate system

The basis vectors are: 

êρ

êϕ

P
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Example: THE MAGNETIC FIELD AROUND A STRAIGHT WIRE

I

The magnetic field around a straight wire which
carries an electric current I depends on the distance
from the wire. The amplitude of the magnetic field is:

B

0

2
IB µ

πρ
=

The direction is perpendicular to the
wire, in the azimuthal direction. So,
it is more convenient to express the
filed using cylindrical coordinates:

0 ˆ
2

IB eϕ
µ
πρ

=

P’

P

êρ
êϕ

B
êϕNote that: depends on the

position. The direction of in P is
different from the direction in P’.

22

In cartesian coordinates, the
expression of the field looks more
complicated:

�𝐵𝐵 =
𝜇𝜇0𝐼𝐼
2𝜋𝜋

−𝑦𝑦𝑒̂𝑒𝑥𝑥 + 𝑥𝑥𝑒̂𝑒𝑦𝑦
𝑥𝑥2 + 𝑦𝑦2



Is this correct:                                                           ?

ADDITION OF VECTORS DEFINED IN 
DIFFERENT COORDINATE SYSTEMS

Consider two vectors:

( )
( )
2,1,0

2,0,0

v

w

=

=

in the Cartesian coordinate system

in the cylindrical coordinate system

Let’s rewrite the vectors using the basis of the coordinate systems:

( ) ( )2,1,0 2,0,0 (4,1,0)v w+ = + =

( )
( )

ˆ ˆ2,1,0 2

ˆ2,0,0 2
x yv e e

w eρ

= = +

= =

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2(cos sin )
ˆ ˆ(2 2cos ) (1 2sin )

x y x y x y

x y

v w e e e e e e e
e e
ρ ϕ ϕ

ϕ ϕ

+ = + + = + + + =

= + + +

It is always convenient to express a vector
using the basis of the coordinate system.

It will avoid major errors!

NO
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CYLINDRICAL COORDINATE SYSTEMS: the position vector

x

y

z

P

r

êρ

êϕ

ˆze

The position vector of a point P is a
vector from the origin to the point P.
In general, the position vector in
Cartesian coordinates x,y,z is expressed
as:

r

ˆ ˆ ˆ( , , ) x y zr x y z xe ye ze= = + +

ˆ ˆzr e zeρρ= +

êρρ

ˆzze

ˆ ˆzr e zeρρ= +
ˆ ˆ ˆ( , , ) zr z e e zeρ ϕρ ϕ ρ ϕ= = + +

Now, consider a cylindrical coordinate
system ρ,ϕ,z.
Is it correct to say that the position vector
in a cylindrical coordinate system can be
expressed as:

?

No!

The position vector in cylindrical
coordinate is:

24



CYLINDRICAL COORDINATE SYSTEMS: differential elements

x

y

z
Assume that the radius of the cylinder is
ρ0, and the height z0. The arc l defined by
the angle ϕ on the circumference C has
length: l=ϕρ.
The differential elements are:

z

dl d
dS d d
dS d dz
dV d d dz

ρ

ρ ϕ
ρ ϕ ρ
ρ ϕ

ρ ϕ ρ

=
=
=

=

zdS
d ρ

dρ ϕ

dl
dρ ϕ

dϕ

0

0

0 0

2

0 00
2 2

00 0
2

0 0 00 0
2 2

0 00 0 0

2

2

z z

z

z

C dl d

S dS d d

S dS d dz z

V dV d d dz z

π

ρ π

π

ρ ρ

ρ π

ρ ϕ πρ

ρ ϕ ρ πρ

ρ ϕ πρ

ρ ϕ ρ π ρ

= = =

= = =

= = =

= = =

∫ ∫
∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫ ∫

dV

dz
d ρ

dρ ϕ

dSρ

dz

dρ ϕ

25



êϕ

ˆre

êθ

SPHERICAL COORDINATE SYSTEMS
A point P can be identified by the coordinates:
x, y, z (Cartesian coordinate system)
r, θ, φ (spherical coordinate system)

ˆ ˆ ˆ, ,
ˆ ˆ ˆ, ,

x y z

r

e e e
e e eθ ϕ

in the Cartesian coordinate system

in the spherical coordinate system

0
0
0 2

sin cos
sin sin
cos

r

x r
y r
z r

θ π
ϕ π

θ ϕ
θ ϕ
θ

≤ ≤ ∞
≤ ≤
≤ ≤

=
 =
 =

The direction of the  basis vectors in a 
cylindrical coordinate system  depends
on the position.

ˆ ˆ ˆ ˆsin cos sin sin cos
ˆ ˆ ˆ ˆcos cos cos sin sin
ˆ ˆ ˆsin cos

r x y z

x y z

x y

e e e e
e e e e
e e e

θ

ϕ

θ ϕ θ ϕ θ

θ ϕ θ ϕ θ

ϕ ϕ

 = + +


= + −
 = − +

P’

y

z

P
êϕ

ˆre

êθ

ϕ

θ

x

r

r

IMPORTANT. The basis vectors in a spherical coord. sys. are orthonormal:
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0, 0, 0 1, 1, 1r r r re e e e e e e e e e e eθ ϕ θ ϕ θ θ ϕ ϕ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ =

The basis vectors are: 
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Example: THE ELECTRIC FIELD PRODUCED BY A POINT CHARGE

The electric field produced by a point charge with
electric charge Q has amplitude:

and, if the charge is located in the origin, its direction is
radial. So, it is convenient to use a spherical coordinate
system to express the electric field:

2
0

1
4

QE
rπε

=

2
0

1 ˆ
4 r

QE e
rπε

=

E

Note: depends on the position! The direction of in P is different from the direction in P’.Eˆre

P

ˆre

P’ ˆre
+

In cartesian coordinates, the expression of the
electric field looks more complicated:

( )3/22 2 2
0

ˆ ˆ ˆ
4

x y zxe ye zeQE
x y zπε

+ +
=

+ +
⇒It is much more convenient to use spherical coordinates
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SPHERICAL COORDINATE SYSTEMS: the position vector

Consider a spherical coordinate system   r, θ, φ

Is the position vector in a spherical
coordinate system:   

?ˆ ˆ ˆ( , , )r r re e eρ θ ϕθ ϕ θ ϕ= = + +

The position vector in a spherical
coordinate system is: ˆrr re=

y

z

P
r êϕ

ˆre

êθ

x

θ

ϕ

Exercise:
express the position vector in a 
spherical coordinate system.

r

No!

28



SPHERICAL COORDINATE SYSTEMS: differential elements

2

2

sin

sin
sin

r

dl rd
dl r d

dS r d d
dV r d d dr

θ

ϕ

θ
θ ϕ

θ ϕ θ

θ ϕ θ

=

=

=

=

y

z

r

x

θ

ϕ

r

dlϕ sinr dθ ϕ

dϕ

dθ

dlθ rdθ

r

rdθ

rdS

rdθ
dr

dV

Assume that the radius of the sphere is r0,

 The arc lθ parallel to the x-z plane has
length: lθ =θ r.

 The arc lϕ parallel to the x-y plane has
length: lϕ =ϕ rsinθ.

The differential elements are:

0

2 2 2
0 00 0

2 2 3
0 00 0 0

sin 4

4sin
3

r r

r

S dS r d d r

V dV r d d dr r

π π

π π

θ θ ϕ π

θ θ ϕ π

= = =

= = =

∫ ∫ ∫

∫ ∫ ∫ ∫
29



SCALAR PRODUCT IN 
CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The scalar product in cylindrical and spherical coordinate systems can be calculated in a way
similar to the Cartesian. This is because the basis vectors are orthonormal.

ˆ ˆ ˆ
ˆ ˆ ˆ

x x y y z z
x x y y z z

x x y y z z

v v e v e v e
v w v w v w v w

w w e w e w e
= + +  ⇒ ⋅ = + += + + 

cartesian coordinate system:

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ
z z

z z z z
z z

v v e v e v e
v w v e v e v e w e w e w e

w w e w e w e
ρ ρ ϕ ϕ

ρ ρ ϕ ϕ ρ ρ ϕ ϕ
ρ ρ ϕ ϕ

= + +  ⇒ ⋅ = + + ⋅ + + == + + 

cylindrical coordinate system:

ˆ ˆ 1
ˆ ˆ 1
ˆ ˆ 1z z

e e
e e
e e

ρ ρ

ϕ ϕ

⋅ =
 ⋅ =
 ⋅ =

ˆ ˆ 0
ˆ ˆ 0
ˆ ˆ 0

z

z

e e
e e
e e

ρ ϕ

ρ

ϕ

 ⋅ =


⋅ =
 ⋅ =

Remember that:

ˆ ˆ ˆ
ˆ ˆ ˆ

r r
r r

r r

v v e v e v e
v w v w v w v w

w w e w e w e
θ θ ϕ ϕ

θ θ ϕ ϕ
θ θ ϕ ϕ

= + +  ⇒ ⋅ = + += + + 

spherical coordinate system:
(in a way similar to the cylindrical, one can prove that:)

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

z z

z z

z z z z z z z z

v e w e v e w e v e w e
v e w e v e w e v e w e
v e w e v e w e v e w e

ρ ρ ρ ρ ρ ρ ϕ ϕ ρ ρ

ϕ ϕ ρ ρ ϕ ϕ ϕ ϕ ϕ ϕ

ρ ρ ϕ ϕ

= ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅

z zv w v w v w v wρ ρ ϕ ϕ⇒ ⋅ = + +

30
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CROSS PRODUCT IN 
CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The cross product in cylindrical and spherical coordinate systems can be calculated in a way
similar to the Cartesian. This is because the basis vectors are orthonormal.

ˆ ˆ ˆ
ˆ ˆ ˆ

x x y y z z

x x y y z z

v v e v e v e
w w e w e w e

= + +  ⇒= + + 

cartesian coordinate system:
ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )
x y z

x y z y z z y x z x x z y x y y x z

x y z

e e e
v w v v v v w v w e v w v w e v w v w e

w w w
× = = − + − + −

cylindrical coordinate system:

spherical coordinate system:

ˆ ˆ ˆ
ˆ ˆ ˆ

z z

z z

v v e v e v e
w w e w e w e

ρ ρ ϕ ϕ

ρ ρ ϕ ϕ

= + +  ⇒= + + 

ˆ ˆ ˆ
ˆ ˆ ˆ

r r

r r

v v e v e v e
w w e w e w e

θ θ ϕ ϕ

θ θ ϕ ϕ

= + +  ⇒= + + 

ˆ ˆ ˆ
ˆ ˆ ˆ( ) ( ) ( )

z

z z z z z z

z

e e e
v w v v v v w v w e v w v w e v w v w e

w w w

ρ ϕ

ρ ϕ ϕ ϕ ρ ρ ρ ϕ ρ ϕ ϕ ρ

ρ ϕ

× = = − + − + −

ˆ ˆ ˆ
ˆ ˆ ˆ( ) ( ) ( )

r

r r r r r r

r

e e e
v w v v v v w v w e v w v w e v w v w e

w w w

θ ϕ

θ ϕ θ ϕ ϕ θ ϕ ϕ θ θ θ ϕ

θ ϕ

× = = − + − + −
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INTEGRALS OF EXPRESSIONS CONTAINING VECTORS
In practical application, you will find often integrals of vectors.
 If the vector is expressed in a Cartesian coordinate system, this is not a problem
 If the vector is not expressed in a Cartesian coordinate system, we must be very carefull

32

(1) Vector expressed in a Cartesian coordinate system
 The basis of a Cartesian coordinate system, 𝑒̂𝑒𝑥𝑥, 𝑒̂𝑒𝑦𝑦, 𝑒̂𝑒𝑧𝑧 are constant: they always point in

the same direction and their absolute value is 1 we can move them out of the integral.

 Example:

( )

[ ]

2 2 2 2 2 2 2

0 0 0 0 0 0 0
2 22 2

2

0
0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ2 2 2
2 2

x y z x y z x y z

x y z x y z

zxe ye xye dx zxe dx ye dx xye dx ze xdx ye dx ye xdx

x xze ye x ye ze ye ye

+ + = + + = + +

   
= + + = + +   

   

∫ ∫ ∫ ∫ ∫ ∫ ∫

2

0

ˆ ˆ ˆwith x y zvdx v zxe ye xye= + +∫



INTEGRALS OF EXPRESSIONS CONTAINING VECTORS

33

(2) Vector expressed in a non-Cartesian coordinate system
 The basis might not be constant in space: the direction could depend on the position.

o we can NOT move them out of the integral.
o we need to express the basis vectors using the Cartesian basis (that are constant)

 Example in a cylindrical coordinate system:

( ) ( )

( ) [ ] [ ]

/2 /2 /2 /2

/2 /2 /2 /2
/2 /2

/2 /2

/2 /2
/2 /2

ˆ ˆ ˆ ˆ ˆsin cos sin cos

ˆ ˆ ˆ ˆ ˆsin cos cos sin 2

x y x y

x y x y y

e d e e d e d e d

e d e d e e e

π π π π

ϕ
π π π π

π π
π π

π π
π π

ρ ϕ ρ ϕ ϕ ϕ ρ ϕ ϕ ρ ϕ ϕ

ρ ϕ ϕ ρ ϕ ϕ ρ ϕ ρ ϕ ρ

− − − −

− −
− −

= − + = − + =

= − + = + =

∫ ∫ ∫ ∫

∫ ∫

/2

/2

ˆwithvd v e
π

ϕ
π

ϕ ρ
−

=∫

ˆ ˆ ˆsin cosx ye e eϕ ϕ ϕ= − +

o 𝑒̂𝑒𝜑𝜑 depends on the angle 𝜑𝜑, so it depends on the variable of integration.
o So, we cannot move the vector outside the integral.
o We need to express the vectro in a Cartesian coordinate system:
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