
ID2203

KTH-2022

Omni-Paxos

Harald Ng

Distributed Systems

Advanced Course

KTH-2022

ID2203

ADMINISTRATIVA

• Swapped the slots for the other lecture and lab this week.

• Tomorrow: Lecture 8:15-10 Lab 9:15-10

• Thursday: Lab 10:15-12 Lecture 10:15-12 

• Check for comments on your project proposal.

• Submit project proposal ASAP if you haven’t yet.

2

KTH-2022

ID2203

COURSE TOPICS

3

‣ Intro to Distributed Systems

‣ Basic Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory

‣ Consensus, RSMs (Omni-Paxos, Raft, etc.)

‣ Dynamic Reconfiguration

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

KTH-2022

ID2203

RECAP

• From Paxos to naïve Sequence Paxos

• no pipelining

• too much IO

• redundancy of local state 

• Liveness

• what makes a server a “good” candidate? 

• This week: Putting everything together - Omni-Paxos:

• Sequence Paxos: log replication

• Ballot Leader Election: liveness

• Reconfiguration: parallel log migration

4

KTH-2022

ID2203

OMNI-PAXOS OVERVIEW

5

phase to the leader election along with a CheckQuorum mech-
anism [19]. These changes resolve the chained scenario but
not the deadlock scenario. The deadlock scenario in Raft is
caused by a design defect that integrates log progress into
leader election. To mitigate this would require fundamental
changes that essentially form a new protocol.

Partial connectivity affects other RSM protocols as well.
Multi-Paxos [33] and VR [27] use a failure detector on the
leader. When a server suspects the leader to have failed, the
round number is incremented to create a leader change. As in
the chained scenario, this will cause a livelock with repeated
leader changes in any scenario where a server is not directly
connected to the leader. Zab’s Fast Leader Election [30] has a
hard requirement on log progress similar to Raft. Addition-
ally, a follower in Zab and VR only votes for another leader
if it observes a majority that also suspects a leader failure.
These protocols will thus be susceptible to the deadlock sce-
nario as well. Appendix A provides a detailed analysis of the
mentioned RSM protocols and partial connectivity.
Key Observations: The chained and deadlock scenarios epit-
omize the challenges of partial connectivity for RSMs. The
chained scenario shows that leader election protocols equiv-
alent to failure detectors are not sufficient. Such protocols
cause disruptions as soon as a server is disconnected from
the leader and thus require all servers to eventually agree on
the same leader. For the purpose of RSM, it is instead enough
having a stable leader connected to a majority. Furthermore,
the deadlock scenario shows that leader election must not
have any hard requirements on servers apart from connectiv-
ity. A server should be an eligible candidate as long as it is
connected to a majority. Thus, an RSM protocol must comple-
ment this with a synchronization phase, since a newly-elected
leader might not have all the committed entries.

In the rest of this paper, we present Omni-Paxos, an RSM
system designed with these observations in mind to overcome
partial connectivity and other drawbacks of tightly-coupled
protocols. We argue for a system with a decoupled design
that separates the core RSM mechanisms of log replication,
leader election, and reconfiguration into different components.
Log replication is only responsible for maintaining a consis-
tent log. Leader election focuses on electing a leader with
adequate connectivity to make progress in log replication.
Reconfiguration provides fast and efficient migration to new
servers while maintaining safety across configurations.

3 System Overview

Omni-Paxos is a system that implements RSM functionalities
by separating the three core mechanisms of log replication
(§4), leader election (§5) and reconfiguration (§6) into three
different components, each with a clear objective. As depicted
in Figure 2, Omni-Paxos provides the view of a single con-
sistent replicated log which is accessible through a service
layer, where every server in Omni-Paxos stores its local copy

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Se
rv

ic
e Replicated Log

C0
Lo

g
R

ep
lic

at
io

n

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

Ballot
Leader Election

Sequence Paxos

C1 C2configurations

Decided

Figure 2: Architecture of Omni-Paxos.

of the replicated log. The replicated log is populated by a
single Sequence Paxos instance at a time. Sequence Paxos
is a leader-based protocol that maintains the correctness and
consistency of the replicated log. A Sequence Paxos instance
is accompanied by its own Ballot Leader Election (BLE).
BLE is responsible for electing a leader and provides liveness
in Sequence Paxos even with extreme partial connectivity
where only one server is connected to a majority. Upon a
reconfiguration, the current Sequence Paxos instance is first
stopped before the new one takes over. The service layer is
responsible for transitioning to the new configuration safely.
This includes migrating the log to new servers and starting
the new Sequence Paxos and BLE instances.
Preliminaries. We assume the fail-recovery model where
servers might fail (non-byzantine) and recover after an arbi-
trarily long time. A correct server is a server that might fail and
recover a finite number of times. State stored in non-volatile
storage is recoverable. We assume a partially synchronous
model where messages can be dropped and delayed, but there
are long enough periods of synchrony for algorithms to make
progress. Servers use bidirectional links to exchange mes-
sages. To simplify the algorithm design, we assume session-
based FIFO perfect links. In practice, we use TCP (session
drops are handled in §4.1.3). Lastly, partitions could cause a
set of links to be temporarily down as discussed in §2. During
this period, messages are systematically dropped.

4 Sequence Paxos - Log Replication

In this section, we present Sequence Paxos, the log replica-
tion protocol in Omni-Paxos. Sequence Paxos is a Sequence
Consensus algorithm that, contrary to Multi-Paxos, replicates
a log in strict sequential order without gaps. As argued by
Raft [31], this approach leads to both a more practical and
understandable protocol. To guide the design of Sequence
Paxos, we present the Sequence Consensus properties that are
inspired by Generalized Consensus [21]:
SC1. Validity: If a server decides on a log L then L only
contains proposed commands.
SC2. Uniform Agreement: For any two servers that decided
logs L and L0 respectively then one is the prefix of the other.
SC3. Integrity: If a server decides on a log L and later decides
on L0 then L is a strict prefix of L0.

3

ID2203

KTH-2021

Sequence Paxos
The final version

KTH-2022

ID2203

KTH-2020

ID2203

CONSENSUS PROPERTIES

• Validity

• Only proposed values may be decided
• Uniform Agreement

• No two processes decide different values
• Integrity

• Each process can decide at most one value
• Termination

• Every correct process eventually decides a value

14 KTH-2020

ID2203

SEQUENCE CONSENSUS PROPERTIES

• Validity
• If process p decides v then v is a sequence of proposed commands (without

duplicates)
• Uniform Agreement

• If process p decides u and process q decides v then one is a prefix of the other
• Integrity

• If process p decides u and later decides v then u is a strict prefix of v

• Termination (liveness)
• If command C is proposed by a correct process then eventually every correct

process decides a sequence containing C

15

KTH-2022

ID2203

DESIGN CONSIDERATIONS

• We want to replicate a growing log.

• Proposers should send only the new entries, rather than the

whole log every time 

• Assume there is a single proposer running for a longer period of
time as a leader.

• Will not be aborted for a while.

• If aborted, safety must still be guaranteed. 

8

KTH-2022

ID2203

ASSUMPTIONS

• FIFO perfect link 

• Ballot Leader Election abstraction:

9

Events:

Indication (out): 〈Leader | n, pi 〉

Notify that pi is elected as leader with ballot n.

Properties:

BLE1. Completeness: Eventually, every correct process elects some correct process,
if a majority of processes is correct.  
BLE2. Eventual Accuracy: Eventually, no two correct processes elect different
correct processes.  
BLE3. Monotonically Increasing Unique Ballots: If a process with ballot is
elected as leader by a process , then all previously elected leaders by have ballot
numbers , and the pair is unique.

pi n
pj pj

m < n (n, pi)

KTH-2022

ID2203

ABSTRACTIONS

10

 BLE
Sequence Paxos

FIFO
perfect

Sequence Paxos

 BLE
Sequence Paxos

FIFO
perfect

 BLE

BLE
Sequence Paxos

FIFO
perfect

Ensures correctness (safety)

Ensures termination (liveness)
(Leader ~ Proposer)

KTH-2022

ID2203

SEQUENCE PAXOS

• Each process acts in all roles as proposer, acceptor and learner

• Every process maintains a single log:

• Use decided index s.t. the decided sequence is  

• A process acts as the leader or a follower in a round

• The leader acts as the sole proposer for round

• Until aborted by another leader  

• A round has a Prepare and an Accept phase

• Log synchronization in the Prepare phase

• Replicate new entries in the Accept phase 

va
ld prefix(va, ld)

n
n

n′￼> n

11

KTH-2022

ID2203

PREPARE PHASE

• Initiated by the leader in a new round n 

• Objective: prepare once, pipeline accepts

• Leader sends ⟨Prepare⟩ to all followers.

• Followers responds with⟨Promise⟩ if not already promised .

• Also includes the log suffix that the leader is missing.

• Upon majority of promises: the leader adopts the most updated log

and synchronizes it with the promised followers.

• After the Prepare phase, any new entry extends the synchronized log

• Allows multiple outstanding ⟨Accept⟩

• Decision in a single round-trip 

n′￼> n

12

KTH-2020

ID2203

13

Leader

Accepted

Prepare

Decided

Promise

Follower

Accepted

Decided

Old

Leader

BLE

AcceptSync

Propose
A

Accept
A

Propose
B

Accept
B

Accepted

The leader and all promised
followers have identical logs

KTH-2022

ID2203

LOG SYNCHRONIZATION

• For safety, the leader must adopt all chosen entries

• Must be among at least one process in any majority

• Adopt the log with highest , or longest log if equal 

• In ⟨Prepare⟩, the leader includes:

• current round:

• accepted round:

• log length:

• decided index:  

• A follower responds with ⟨Promise⟩ only if its and includes:

• and its own

• : the log entries that the leader is missing

• If greater :

• If same and but longer log:

• Else:

na

n
na

|va |
ld

nprom < n
n na, |va | , ld
sfx

na su f f ix(va, ld,leader)
na su f f ix(va, |va |leader)

[]
14

} more updated than leader

KTH-2022

ID2203

ACCEPTSYNC

• Upon majority of ⟨Promise⟩ adopt the from the maximum
promise:

• If greater :

• If same :  

• Synchronize updated log with all promised followers using
⟨AcceptSync⟩ including:

•

• : the log entries that the follower is missing

• If greater :

• If same and but longer log:

• : the index to append at in

sfx

na va = prefix(va, ld) ⊕ sfx
na va = va ⊕ sfx

n
sfx

na suf fix(va, ld, follower)
na suf fix(va, |va |follower)

lsync sfx va

15

KTH-2022

ID2203

ACCEPT PHASE

• After the Prepare phase, the leader and all promised followers have
the same common log prefix with all chosen entries.  

• Leader replicates new command C with ⟨Accept | n, C⟩ to all
promised followers.

• Followers respond with accepted index

• When a majority has ⟨Accepted | n, idx⟩, send ⟨Decide | n, idx⟩ 

• Leader handles late ⟨Promise⟩ by synchronising that follower with
its current log using ⟨AcceptSync⟩

|va |

16

KTH-2022

ID2203

EXAMPLE

17

10

1 2 3 10 1 2 3 1011

p1
BLE

Prepare

3

AcceptSync

11

Accept Decide Decide

p3 AcceptSync DecidePrepare

BLE

1 2 3 1011

10113 4 5 6

1 2 3 1011 1 2 3 1011

1 2 3 1011

1 2 3
ld = 1

1 2 3 4 5 6
ld = 2

1 2 3 10 1 2 3 1011

p2

BLE

Promise Accepted Accepted
Promise AcceptedPropose(10)

Propose(11)

1 2 3 10111 2
ld = 2

1 2 3 1011

KTH-2022

ID2203

FULL PSEUDO CODE - STATE AND BLE

18

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2022

ID2203

PREPARE PHASE

19

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2022

ID2203

ACCEPT PHASE

20

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2022

ID2203

CORRECTNESS

• We must guarantee that:

• If a proposal is chosen, then for every higher proposal

 that is chosen,  

• We have two cases:

• : only successively longer sequences can be chosen within

the same round since processes accept growing sequences.

• : the prepare phase guarantees that all chosen sequences

will be adopted in , and no new sequences can be chosen in
round after that. 

(n, v)
(n′￼, v′￼) v ≤ v′￼

n = n′￼

n < n′￼
n′￼

n

21

KTH-2022

ID2203

SUMMARY

• Assume stable leader and FIFO perfect links.

• Log synchronization in the Prepare phase  

• Single round-trip to decide a command (most of the time) ✅  

• Only new commands are being sent ✅  

• Pipeline ⟨Accept⟩ without waiting for previous to be decided ✅  

• Multiple Proposers and FLP ghost

• Handled with BLE in the partially synchronous model (not

solvable in async model) 🔜

22

ID2203

KTH-2021

Ballot Leader Election

KTH-2022

ID2203

REVISITING BLE
BLE1. Completeness: Eventually, every correct process elects some correct
process, if a majority of processes is correct.  
 
BLE2. Eventual Accuracy: Eventually, no two correct processes elect different
correct processes.  
 
BLE3. Monotonically Increasing Unique Ballots: If a process with ballot is
elected as leader by a process , then all previously elected leaders by have ballot
numbers , and the pair is unique.

pi n
pj pj

m < n (n, pi)

24

For Sequence Paxos:  
Which processes really need to elect and agree with each other?

ID2203

KTH-2021

Partial Connectivity

KTH-2022

ID2203

THE PROBLEM OF PARTIAL CONNECTIVITY

• Thus far, we have assumed network failures to be full partitions.

• In practice, network partitions can be more complex and

unpredictable. 

• Partial connectivity

• Failures at the link level.

• Servers A and B are disconnected but both can reach server C.

26

A

B

C A

B

C

Full partition Partial partition

KTH-2022

ID2203

TEASER: EXISTING ALGORITHMS CANNOT HANDLE THIS!

27

KTH-2022

ID2203

QUORUM-CONNECTED LEADER ELECTION

• Observe: In Sequence Paxos, only the leader must be connected to a
majority for liveness.

• Followers don’t talk to each other! 

• Quorum-connected server: a quorum-connected server is a server that is
correct and has a direct link to at least a majority of correct servers
(including itself).

28

QLE1. Quorum-Connected Completeness: Eventually, every quorum-connected
server elects some quorum-connected server, if a quorum-connected server exists. 
 
QLE2. Quorum-Connected Eventual Accuracy: Eventually, there is a majority of
servers S where no two quorum-connected servers in S elect differently.  
 
QLE3. Monotonically Increasing Unique Ballots: Unchanged.

KTH-2022

ID2203

BALLOT LEADER ELECTION

• A server has a ballot number b and a quorum-connected flag qc

• Periodically, all servers exchange heartbeats.

• Broadcast ⟨HBRequest | r⟩

• Reply ⟨HBReply | r, qc, b⟩ 

• Servers can determine two things with the heartbeats:

1. Am I quorum-connected?

2. Which of my peers are alive and quorum-connected ? 

• Upon timeout:

• If received a majority of ⟨HBReply⟩:

• Check if leader is still alive and quorum-connected. If not, increment b.

• Elect the server with highest b and qc = true

• Else: set qc = false 

29

KTH-2022

ID2203

BLE PSEUDO CODE

30

KTH-2022

ID2203

CORRECTNESS

• Assuming we learn a time out s.t. no late ⟨HBReply⟩ is received.

• A late heartbeat is ignored and does not affect correctness.

• QLE1. Quorum-connected Completeness

• A server can only elect if it got a majority of ⟨HBReply⟩i.e. is

quorum-connected. The elected server must have qc = true. 

• QLE3. Monotonically Increasing Unique Ballots

• Each ballot is unique due to is unique. Servers only

elect new leaders with higher ballot than previous leaders.
(b, pid) pid

31

KTH-2022

ID2203

CORRECTNESS CONTINUED

• QLE2. Quorum-Connected Eventual Accuracy: Eventually, there is a majority of servers S
where no two quorum-connected servers in S elect differently.  

• Consider every possible case of connectivity between quorum-connected servers:

1. Only one quorum-connected server in the cluster.

2. Multiple quorum-connected servers:

A. That are connected to each other.

B. That are disconnected to each other.

• 1. That qc-server will be the only one receiving a majority of ⟨HBReply⟩ and its own ballot
will be the only with qc = true.

• 2A. All qc-servers get each others ⟨HBReply⟩. They all elect the same leader with the
highest ballot.

• 2B. Since they are quorum-connected but disconnected, they all are connected to a majority
of servers. Any majority overlaps on at least one server.

• That server is not qc: will not elect in BLE, but will follow (i.e. promise) the leader
with the highest ballot in Sequence Paxos.

• That server is qc: will elect the one with highest ballot (as in 2A)

32

KTH-2022

ID2203

EXAMPLES - SEQUENCE PAXOS AND BLE

33

KTH-2022

ID2203

OBSERVATIONS

• Omni-Paxos guarantees liveness as long as one quorum-connected
server exists. 

• BLE and its quorum-connected properties are weaker than a usual
leader election. But it is sufficient for Sequence Paxos 

• Non qc-servers do not elect (QLE1)

• But if they are connected to the leader, they will get the
⟨Prepare⟩ to participate in Sequence Paxos. 

• Different qc-servers might elect different leaders (QLE2)

• One of them will have the highest ballot. That leader will

also be the only one making progress in Sequence Paxos.

34

ID2203

KTH-2021

Fail Recovery

KTH-2022

ID2203

OUTLINE

• At this point, we have an efficient and resilient algorithm. 

• Fail recovery model

• Recover from crashes. 

• FIFO perfect link assumption is impractical.

• Session-based FIFO perfect links

• Handle session drops

36

KTH-2022

ID2203

FAIL RECOVERY

• A process is correct if it crashes and recovers a finite number of
times.

• By crashing and restarting, a process loses any arbitrary suffix of
most recent messages in each FIFO perfect link. 

• A recovered process must get its log synchronized to be up-to-date
before doing anything further.

37

KTH-2022

ID2203

RECOVERY

• Each process must store the following variables in persistent storage

• : the log.

• : the decided index.

• : the promised round.

• : the latest round entries were accepted in. 

• Upon recovery, restore these variables.

• Load into BLE

• Set own state into (FOLLOWER, RECOVER)

• Send ⟨PrepareReq⟩ to all peers

• If a receiving process is the leader, it replies with ⟨Prepare⟩

va
ld
nprom
na

nprom

38

KTH-2022

ID2203

RECOVER STATE

• In (FOLLOWER, RECOVER), a process can only handle:

• ⟨Leader⟩ : got elected as the leader, will get synchronized by

performing the prepare phase.

• ⟨Prepare⟩ : leader will help us get synchronized.

39

Leader

Prepare

Promise

Follower

BLE

AcceptSync

Leader

Prepare

Promise

Follower

BLE

AcceptSync

PrepareReq

Prepare

KTH-2022

ID2203

SESSION-BASED FIFO PERFECT LINKS

• Assume FIFO perfect links once a session has been established.

• e.g. TCP sessions

• Need to handle session-drops. 

• If disconnected to a peer… do nothing 

• When reconnecting to a peer p:

• Send ⟨PrepareReq⟩ to p because p might have become the new

leader during our down-time.

• If p is the leader we last promised:

• Go into recover mode to avoid handling anything before
being synchronized.

40

KTH-2022

ID2203

PSEUDO CODE

41

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

① State and Functions
Persistent state on all servers:

log[] log with entries (0-indexed)

promisedRnd the round a server has promised to not accept
entries from any lower round

acceptedRnd the latest round a server has accepted entries in

decidedIdx the log index that a server has decided up to

Volatile state of leader:

currentRnd the round that this server is leading in
promises{} set of received promises

maxProm the highest promise received during the prepare
phase

accepted[] the accepted index per server.

Initialized to 0 for all servers

chosenIdx the highest index accepted by a majority. Initially
set to 0

buffer[] buffer for client requests received during the
prepare phase

⑪ ⟨PrepareReq⟩ from follower f
Receiver implementation:

1. return if state ≠ (LEADER, _)

2. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩ to f

Functions:
stopped() true if last entry in the log is SS else false (§5)
prefix(idx) the entries in the log with index {0..idx-1}

suffix(idx) if idx > |log| then [] else the entries in the log with
index {idx..|log|-1}

Volatile state on all servers:

state the role and phase a server is in. Initially
(FOLLOWER, PREPARE)

② ⟨Leader⟩ from BLE
Fields:
s the elected server
n the round s got elected in
Leader implementation (if s = self AND n > promisedRnd):

1. reset all volatile state of leader

2. state ← (LEADER, PREPARE),

currentRnd ← n, promisedRnd ← n,

3. insert own promise to promises:

(acceptedRnd, |log|, self, decidedIdx, suffix(decidedIdx))

4. send Prepare⟨currentRnd, acceptedRnd, |log|, decidedIdx⟩

to all peers

Follower implementation: (if s ≠ self):

1. state.role ← FOLLOWER

⑫ ⟨Reconnected⟩ to server s
Receiver implementation:

1. if s is the current leader then state ← (FOLLOWER, RECOVER)

2. send ⟨PrepareReq⟩ to s

1 2 3

10

1 2 3 10 1 2 3 10 11

A
BLE ②

Prepare ③

3

AcceptSync ⑤

11

Accept ⑦ Decide ⑨ Decide ⑨

C
BLE ②

AcceptSync ⑤ Decide ⑨Prepare ③
1 2 3 4 5 6

1 2 3 10 11

10 114 5 6

1 2 3 10 11 1 2 3 10 11

1 2 3 10 11

decidedIdx = 1

decidedIdx = 2

⑩ Upon Recovery
Receiver implementation:

1. reload: log, promiseRnd, acceptedRnd and decidedIdx

from persistent storage

2. state ← (FOLLOWER, RECOVER),

send ⟨PrepareReq⟩ to all peers

1 2 3 10 1 2 3 10 11

B
BLE ②

Promise ④
1 2

Accepted ⑧ Accepted ⑧

Promise ④ Accepted ⑧Propose(10) ⑥

Propose(11) ⑥

1 2 3 10 11
decidedIdx = 2

1 2 3 10 11

④ ⟨Promise⟩ from follower f
Fields:

n promised round
accRnd the acceptedRnd of f
logIdx the log length of f
decIdx the decidedIdx of f
sfx suffix of entries the leader might be missing
Receiver implementation:
1. return if n ≠ currentRnd

2. insert (accRnd, logIdx, f, decIdx, sfx) to promises

③ ⟨Prepare⟩ from leader l
Fields:

n round of leader l
accRnd the acceptedRnd of l
logIdx the length of the leader's log
decIdx the decidedIdx of l
Receiver implementation:
1. return if promisedRnd > n

2. state ← (FOLLOWER, PREPARE)
3. promisedRnd ← n

4.
let sfx ← if acceptedRnd > accRnd then
suffix(decIdx) else if acceptedRnd =
accRnd then suffix(logIdx) else []

5. send ⟨Promise, n, acceptedRnd, |log|,
decidedIdx, sfx⟩ to l

⑤ ⟨AcceptSync⟩ from leader l
Fields:

n round of leader l
sfx entries to be appended to the log

syncIdx the position in the log where sfx
should be appended at

Receiver implementation:

1. if promisedRnd = n AND

state = (FOLLOWER, PREPARE)

2. acceptedRnd ← n,

state ← (FOLLOWER, ACCEPT)

3. log ← prefix(syncIdx),

append sfx to the log

4. send ⟨Accepted, n, |log|⟩ to l

⑦ ⟨Accept⟩ from leader l
Fields:

n round of leader l
C client request
Receiver implementation:

1. return if promisedRnd ≠ n OR

state ≠ (FOLLOWER, ACCEPT)

2. append C to the log,

send ⟨Accepted, n, |log|⟩ to l

⑧ ⟨Accepted⟩ from follower f
Fields:

n promised round
logIdx the position in the log f has accepted up to
Receiver implementation:

1. return if currentRnd ≠ n OR state ≠ (LEADER, ACCEPT)

2. accepted[f] ← logIdx

3.

if logIdx > chosenIdx AND a majority has accepted logIdx
then chosenIdx ← logIdx, decidedIdx ← logIdx,

send ⟨Decide, currentRnd, chosenIdx⟩ to all promised
followers

⑨ ⟨Decide⟩ from leader l
Fields:

n round of leader l

decIdx position in the log that has been
decided

Receiver implementation:

1.
if promisedRnd = n AND

state = (FOLLOWER, ACCEPT) then
decidedIdx ← decIdx

If state = (LEADER, PREPARE) then:

P1. return if |promises| < majority

P2. maxProm ← the value with highest accRnd in promises
(and highest logIdx if equal)

P3. if maxProm.accRnd ≠ acceptedRnd then

log ← prefix(decidedIdx)

P4. append maxProm.sfx to the log
P5. if stopped()then clear buffer else append buffer to the log

P6. acceptedRnd ← currentRnd,

accepted[self] ← |log|, state ← (LEADER, ACCEPT)

P7.

foreach p in promises:

let syncIdx ← if p.accRnd = maxProm.accRnd then
p.logIdx else p.decIdx,

send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to p.f

If state = (LEADER, ACCEPT) then:

A1. let syncIdx ← if accRnd = maxProm.accRnd then
maxProm.logIdx else decIdx

A2. send ⟨AcceptSync, currentRnd, suffix(syncIdx), syncIdx⟩
to f

A3. let idx ← max(chosenIdx, decidedIdx),

if idx > decIdx then send ⟨Decide, currentRnd, idx⟩ to f

⑥ Proposal C from client
Receiver implementation:

1. return if stopped()

If state = (LEADER, PREPARE) then:

P1. insert C into buffer

If state = (LEADER, ACCEPT) then:

A1.
.

append C to the log, set accepted[self] ← |log|

A2. send ⟨Accept, currentRnd, C⟩ to all promised followers

KTH-2022

ID2203

SUMMARY

• From naïve Sequence Paxos to Sequence Paxos

• Log Synchronization in Prepare phase

• Pipeline ⟨Accept⟩ in Accept phase. 

• Liveness with Ballot Leader Election

• Quorum-connected leader election properties

• Resilient: guaranteed progress with a single quorum-connected

node. 

• Handling Failures:

• Session-based FIFO perfect link

• Always get synchronized first when recovering.

42

KTH-2022

ID2203

UP NEXT

• Reconfiguration: how to safely add/remove processes.

• Parallel log migration 

• Other replicated state machines

• Raft and ZooKeeper (Zab)

• Partial connectivity

43

