Advanced Course
 Distributed Systems

Consensus
 "The Paxos Protocol"

 $+$
Course Topics

- Intro to Distributed Systems
- Basic Abstractions and Failure Detectors
- Reliable and Causal Order Broadcast
- Distributed Shared Memory
- Consensus (Paxos, Raft, etc.)
- Replicated State Machines + Virtual Logs
- Time Abstractions and Interval Clocks (Spanner etc.)
- Consistent Snapshotting (Stream Data Management)
- Distributed ACID Transactions (Cloud DBs)

Consensus

- In consensus, the processes propose values
- they all have to agree on one of these values
- Solving consensus is key to solving many problems in distributed computing
- Total order broadcast (aka Atomic broadcast)
- Atomic commit (databases)
- Terminating reliable broadcast
- Dynamic group membership
- Stronger shared store models

CONSENSUS INTERFACE

Events

Request：〈c Propose｜v〉
Indication：$\langle\mathrm{c}$ Decide｜v〉

Properties：

C1，C2，C3，C4

Single Value Consensus Properties

C1. Validity

Any value decided is a value proposed

C2. Agreement

No two correct nodes decide differently

C3. Termination

Every correct node eventually decides

C4. Integrity

A node decides at most once

SAMPLE EXECUTION

Does it satisfy consensus? yes

Fail-Stop Model Algorithm

- Hierarchical Consensus
- Rely on P + BEB
- Round per process p1, ...pn. Pi is leader of round i.
- Each leader broadcasts and decides value
- First correct process commits the decided value.
- Each future leader adopts that value.

Single Value Uniform Consensus

- Validity
- Only proposed values may be decided
- Uniform Agreement
- No two processes decide different values
- Integrity
- Each processes can decide a value at most once
- Termination
- Every process eventually decides a value

SAMPLE EXECUTION

Does it satisfy uniform consensus? no

Single Value Uniform Consensus

- Solvable in Fail-Stop model (decide on last round) with strong FD
- Not solvable in the Fail-Silent model (asynchronous system model)
- Given a fixed set of deterministic processes there is no algorithm that solves consensus in the asynchronous model if one process may crash and stop
- There are some infinite executions that where processes are not able to decide on a single value
- Fischer, Lynch and Patterson FLP result

ASSUMPTIONS

- Partially synchronous system
- Fail-noisy model
- Message duplication, loss, re-ordering

ImPortance

- Paxos is arguably the most important algorithm in distributed computing
- This presentation follows the paper "Paxos Made Simple" (Lamport, 2001)

High Level View of Paxos

- Elect a single proposer using Ω
- Proposer imposes its proposal to everyone
- Everyone decides
- Problem with Ω
- Several processes might initially be proposers (contention)

High Level View of Paxos

- Abortable Consensus (Paxos) saves the day
- Processes attempt to impose their proposals
- Might abort if there is contention (safety) (multiple proposers)
- Ω ensures eventually 1 proposer succeeds (liveness)

Typical Usage

Paxos

Ensures correctness (safety)
@
Ensures termination (liveness)
(Leader ~ Paxos Proposer)

The Paxos Algorithm

TERMINOLOGY

- Proposers
- Will attempt imposing their proposal to set of acceptors
- Acceptors
- May accept values issued by proposers
- Learners
- Will decide depending on acceptors acceptances
- Each process plays all 3 roles in classic setting

STRAWMAN'S SOLUTION

- Centralized solution
- Proposer sends value to a central acceptor
- Acceptor decides first value it gets
- Problem
- Acceptor is a single-point of failure

Abortable Consensus

- Decentralises acceptors, i.e. proposers talks to set of acceptors
- Tolerate failures, i.e. acceptors might fail (needs only a majority of acceptors surviving)
- Proposers might fail to impose their proposals (aborts)

DECENTRALIZATION \& FAULT-TOLERANCE

- Quorum approach
- Each proposer tries to impose its value v on the set of acceptors
- If majority of acceptors accept v , then v is chosen
- Learners try to decide the chosen value

BALLOT (ROUND) ARRAY (TABLE)

- Describes the state of the acceptors at various rounds
- Each row describes one round
- Each acceptor's state of a_{i} initially \perp

Round	a_{1}	a_{2}	a_{3}
$n=5$			
\ldots			
$n=2$			
$n=1$		\perp	\perp
$n=0$	\perp		

WHEN TO ACCEPT

- Ideally, there will be a single proposer
- Should at least provide obstruction-free progress
- Obstruction-free = if a single proposer executes without interference (contention) it makes progress
- Suggested invariant
- P1. An acceptor accepts first proposal it receives

ATTEMPT

- P1. An acceptor accepts first proposal it receives
- Problem
- Impossible to later tell what was chosen
- Forced to allow restarting! Let acceptors change their minds!

BALLOT (ROUND) ARRAY (TABLE)

Two proposers p1 and p2 that propose red and blue But a_{3} crashes

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$n=5$					
\ldots					
$n=2$					
$n=1$	red	red	red	blue	blue
$n=0$	\perp			\perp	\perp

BALLOT (ROUND) ARRAY (TABLE)

Two proposers p1 and p2 that propose red and blue But a_{3} crashes

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$n=5$					
\ldots					
$n=2$				blue	blue
$n=1$	red	red	\perp	\perp	\perp
$n=0$	\perp				

Enabling Restarting

- Proposer can try to propose again
- Distinguish proposals with unique sequence number
- Often called ballot number
- Monotonically increasing
- Implementation with n nodes
- process 1 uses seq: $1, n+1,2 n+1,3 n+1, \ldots$
- process 2 uses seq: $2, n+2,2 n+2,3 n+2, \ldots$
- process 3 uses seq: $3, n+3,2 n+3,3 n+3, \ldots$
- or...
- Pair of values: (local clock or logical clock, local identifier)
- Lexicographic order: if clock collides, choose highest pid

PROBLEM WITH RESTART

Ballot (round) Array (table)

p1 proposes (1, red) and p2 proposes (3 , blue) But a_{1} and a_{2} crashed

Round	a_{1}	\mathbf{a}_{2}	\mathbf{a}_{3}	\mathbf{a}_{4}	\mathbf{a}_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$			blue	blue	blue
$\mathrm{n}=2$	red	red	red	\perp	\perp
$\mathrm{n}=1$	red	red	red	\perp	\perp
$\mathrm{n}=0$	\perp			\perp	\perp

Ensuring Agreement

- Problem (previous slide):
- If restarting allowed,
- Majority may first accept red
- Majority may later accept blue
- Solve it by enforcing:
- P2. If proposal (n, v) is chosen, every higher numbered proposal chosen has value v

BIRDS-EYE VIEW

- Abortable Consensus in a nutshell
- P1. An acceptor accepts first proposal it receives
- P2. If v is chosen, every higher proposal chosen has value v
- Handwaving
- P1 ensures obstruction-free progress and validity
- P2 ensures agreement
- Integrity trivial to implement
- Remember if chosen before, at most choose once

ATTEMPT

P2. If v is chosen, every higher proposal chosen has value v How to implement it?
P2a. If v is chosen, every higher proposal accepted has value v
Lemma

$$
\mathrm{P} 2 \mathrm{a}=>\mathrm{P} 2
$$

Problem

Recall

P1. An acceptor accepts first proposal it receives
P2a. If v is chosen, every higher proposal accepted has value v
Problem: we cannot prevent an acceptor from accepting higher value proposal

Solution

Strengthen P2a
P2b. If v is chosen, every higher proposal issued has value v
If obeyed, solves problem
Not allowed anymore.

BALLOT (ROUND) ARRAY (TABLE)

p 1 proposes (1,red) and p2 proposes (3, blue)
But a_{1} and a_{2} crashed before p2 proposes (3, blue)

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$n=5$					
$n=4$					
$n=3$			red	\perp	\perp
$n=2$	red	red	red	\perp	\perp
$n=1$	red	red	red	\perp	\perp
$n=0$	\perp			\perp	\perp

BALLOT (ROUND) ARRAY (TABLE)

p 1 proposes (1,red) and p2 proposes (3, blue)
At round 3 p 2 has to issue $(3, \mathrm{red})$

Round	\mathbf{a}_{1}	a_{2}	\mathbf{a}_{3}	\mathbf{a}_{4}	\mathbf{a}_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$			red	red	red
$\mathrm{n}=2$	red	red	red	\perp	\perp
$\mathrm{n}=1$	red	red	red	\perp	\perp
$\mathrm{n}=0$	\perp			\perp	\perp

P2 PRESERVED

- P2. If v is chosen, every higher proposal chosen has value v
- P2a. If v is chosen, every higher proposal accepted has value v
- P2b. If v is chosen, every higher proposal issued has value v
- Lemma
- P2b $=>$ P2a
- Recall P2a => P2.
- Thus P2b => P2

Main Lemma

- P2c. If any proposal (n, v) is issued, there is a majority set S of acceptors such that either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Lemma: P2c => P2b

CASE A

(a) no one in S has accepted any proposal number < 3 p2 issues (3, blue) at round 3

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$n=5$					
$n=4$					
$n=3$	red	red	blue	blue	blue
$n=2$	red	red	\perp	\perp	\perp
$n=1$	red	red	\perp	\perp	\perp
$n=0$	\perp	\perp	\perp	\perp	\perp

Case B

- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- red is chosen at round 3 , no proposer at round 4
- Proposer at round 5 will always get red querying any majority

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$	red	red	red	$?$	$?$
$\mathrm{n}=2$	red	red	$?$	$?$	$?$
$\mathrm{n}=1$	red	red	\perp	\perp	\perp
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

Case B

- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- red is chosen at round 3 , no proposer at round 4
- Proposer at round 5 will always get red querying any majority

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$		red	red	red	
$\mathrm{n}=4$					
$\mathrm{n}=3$	red	red	red	$?$	$?$
$\mathrm{n}=2$	red	red	$?$?	?
$\mathrm{n}=1$	red	red	\perp	\perp	$?$
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

How To Implement P2C

- A proposer at round \mathbf{n} needs a query phase to get

1. the value of highest round number
2. a promise that the state of S does not change until round \mathbf{n}

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$n=5$					
$n=4$					
$n=3$	red	red	ra		
$n=2$	red	red	$?$	\perp	$?$
$n=1$	red	red	\perp	\perp	\perp
$n=0$	\perp		\perp	\perp	

Prepare Phase

- A proposer issues prop(n, v)
- Guarantee (P2c)?
- v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Need a prepare(n) phase before issuing prop(n, v)
- Extract a promise from a majority of acceptors not to accept a proposal less than n
- Acceptor sends back its highest numbered accepted value

Abortable Consensus in Paxos

Proposer

Pick unique sequence n, send prepare(n) to all acceptors
3) Proposer upon majority S of promises:

Pick value v of highest proposal number in S, or if none available pick v freely Issue accept(n, v) to all acceptors
5) Proposer upon majority S of responses:

If got majority of acks
decide(v) and broadcast decide(v);
Otherwise abort

Acceptors

2) Upon prepare(n):

- Promise not accepting proposals numbered less than n
- Send highest numbered proposal accepted with number less than n (promise)

5) Upon accept(n, v):

- If not responded to prepare $m>n$, accept proposal (ack); otherwise reject (nack)

abortable consensus satisfies:

P2c. If (n, v) is issued, there is a majority of acceptors S such that:
a) no one in S has accepted any proposal numbered " $<$ " n, OR
b) v is value of highest proposal among all proposals "<" n accepted by acceptors in S

KTH-2022

Getting Familiar with Paxos

MESSAGE LOSS AND FAILURES

- Many sources of abort
- Contention (multiple proposals competing)
- Message loss (e.g. not getting an ack)
- Process failure (e.g. proposer dies)
- So Proposers try Abortable Consensus again...
- Prepare(5), Accept(5,v), prepare(15), ...
- Eventually the Paxos should terminate (FLP85?)

FLP GHOST

$p_{1} \quad$ a.prep(1):ok \quad b.prep(3):ok a.acpt(1,v):fail a.prep(4):ok b.acpt(3,v):fail
$p_{2} \quad$ a.prep(1):ok b.prep(3):ok a.acpt(1,v):fail a.prep(4):ok b.acpt(3,v):fail
a.prep(1):ok b.prep(3):ok a.acpt(1,v):fail a.prep(4):ok b.acpt(3,v):fail

proposers a and b forever racing...

Eventual leader election (Ω) ensures liveness
Eventually only one proposer => termination

FAMILIARIZING WITH PAXOS (1/4)

Different processes accept different values, same process accepts different values
Assume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$
a.prep(1):ok a.acpt(1,red):ok
p_{1} a.prep(1):ok
p_{2}
a.prep(1):ok
a.prep(1):ok
p_{5}
p_{6}
p_{7}

FAMILIARIZING WITH PAXOS (2/4)

Different processes accept different values, same process accepts different values
Assume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$
a.prep(1):ok a.acpt(1,red):ok
p_{1}
a.prep(1):ok b.prep(2):ok b.acpt(2,blue):ok
p_{2}
a.prep(1):ok b.prep(2):ok
p_{3}
a.prep(1):ok b.prep(2):ok
p_{4}
b.prep(2):ok
p_{5}
\qquad
p_{7}

FAMILIARIZING WITH PAXOS (3/4)

Different processes accept different values, same process accepts different values
Assume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$
a.prep(1):ok a.acpt(1,red):ok
p_{1}
a.prep(1):ok b.prep(2):ok b.acpt(2,blue):ok

a.prep(1):ok b.prep(2):ok c.prep(3):ok
b.prep(2):ok c.prep(3):ok
c.prep(3):ok
\qquad

FAMILIARIZING WITH PAXOS (4/4)

Different processes accept different values, same

 process accepts different valuesAssume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$

p_{1}	a.acpt(1,red):ok			d.acpt(4,yellow):ok
	a.prep(1):ok b.prep(2):ok	b.acpt(2,blue)):ok	d.acpt(4,yellow):ok
p_{2}	a.prep(1):ok b.prep(2):ok	c.prep(3):ok	c.acpt(3,green):ok	d.acpt(4,yellow):ok
p_{3}	a.prep(1):ok b.prep(2):ok	c.prep(3):ok	d.prep(4):ok	d.acpt(4,yellow):ok
p_{4}	b.prep(2):ok	c.prep(3):ok	d.prep(4):ok	
p_{5}		c.prep(3):ok	d.prep(4):ok	
p_{6}			d.prep(4):ok	

Optimizations

PAXOS (AC) IN A NUTSHELL

- Necessary
- Reject accept(n, v) if answered prepare $(\mathrm{m}): m>n$
- i.e. prepare extracts promise to reject lower accept

Possible scenario \#1

Caveat

- Proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, acceptors $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right\}$

	a.prep(80):ok	b.prep(10):ok	b.accept(10,red):fail
b.prep(10):ok p_{2} a.prep(80):ok b.accept(10,red):fail p_{3} a.prep(80):ok b.prep(10):ok	b.accept(10,red):fail		

- accept(10) will be rejected, why answer prepare(10)?
- No point answering prepare(n) if accept (n, v) will be rejected

SUMMARY OF OpTIMIZATIONS

- Necessary
- Reject accept(n,v) if answered prepare(m) :m>n
- i.e. prepare extracts promise to reject lower accept
- Optimizations
- a) Reject prepare(n) if answered prepare(m):m>n
- i.e. prepare extracts promise to reject lower prepare

Possible scenario \#2

accept(80,blue) can anyway not get majority, as P2b guarantees every higher proposal issued would have same value!

a.prep(80):ok b.prep(90):ok b.acpt(90,red:):ok a.acpt(80,blue):fail
b.acpt(90,red):ok a.acpt(80,blue):ok
p_{6}
b.acpt(90,red):ok a.acpt(80,blue):ok
b.acpt(90,red):ok a.acpt(80,blue):ok

SUMMARY OF OpTIMIZATIONS (2)

- Necessary
- Reject accept(n,v) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower accept
- Optimizations
a) Reject prepare(n) if answered prepare(m): $m>n$ i.e. prepare extracts promise to reject lower prepare
b) Reject $\operatorname{accept}(\mathrm{n}, \mathrm{v})$ if answered $\operatorname{accept}(\mathrm{m}, \mathrm{u}): m>n$ i.e. accept extracts promise to reject lower accept
c) Reject prepare(n) if answered $\operatorname{accept}(m, u): m>n$ i.e. accept extracts promise to reject lower prepare

Possible scenario \#3

Caveat

SUMMARY OF Optimizations (3)

- Necessary
- Reject accept(n,v) if answered prepare(m) : m>n
i.e. prepare extracts promise to reject lower accept
- Optimizations
a) Reject prepare(n) if answered prepare(m): $m>n$ i.e. prepare extracts promise to reject lower prepare
b) Reject $\operatorname{accept}(\mathrm{n}, \mathrm{v})$ if answered $\operatorname{accept}(\mathrm{m}, \mathrm{u}): m>n$ i.e. accept extracts promise to reject lower accept
c) Reject prepare(n) if answered $\operatorname{accept}(m, u): m>n$
i.e. accept extracts promise to reject lower prepare
d) Ignore old messages to proposals that got majority

State to Remember

- Each acceptor remembers
- Highest proposal (n,v) accepted
- Needed when proposers ask prepare(m)
- Lower prepares anyway ignored (optimization a \& c)
- Highest prepare it has promised
- It has promised to ignore accept(m) with lower number
- Can be saved to stable storage (recovery)

Omitting Accept

- Paxos requires 2 round-trips (with no contention)
- Prepare(n) : prepare phase (read phase)
- Accept(n, v): accept phase (write phase)
- P2. If v is chosen, every higher proposal chosen has value v
- Improvement
- Proposer skips the accept phase if a majority of acceptors return the same value v

PERFORMANCE

- Paxos requires 4 messages delays (2 round-trips)
- Prepare(n) needs 2 delays (Broadcast \& Get Majority)
- Accept(n, v) needs 2 delays (Broadcast \& Get Majority)
- In many cases only accept phase is run
- Paxos only needs 2 delays to terminate
- (Believed to be) optimal

Paxos Correctness

P2b. If v is chosen, every higher proposal issued has value v
P2c. If any prop (n, v) is issued, there is a set S of a majority of acceptors s.t. either
(a) no one in S has accepted any proposal numbered less than n
(b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S

Lemma: P2c => P2b

Proof map:

Prove lemma by assuming P2c, prove P2b follows
Prove P2b follows by assuming v is chosen, prove every higher proposal issued has value v

Thus: if P2c is true, and prop (n, v) chosen
Show by induction every higher proposal issued has value v

- P2b. If v is chosen, every higher proposal issued has value v
- P2c. If any prop (n, v) is issued, there is a set S of a majority of acceptors s.t. either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S

Thus: P2c is true, and prop (n, v) chosen

 Show by induction on (on prop number) every higher proposal issued has value vNeed to show by induction that all proposals (m, u), where $\mathrm{m} \geq \mathrm{n}$, have value $\mathrm{u}=\mathrm{v}$

Round	a_{1}	a_{2}	a_{3}
5			
4			
3			
2	V	V	
1	W	\perp	\perp
0	\perp	\perp	\perp

- P2b. If v is chosen, every higher proposal issued has value v
- P2c. If any prop (n, v) is issued, there is a set S of a majority of acceptors s.t. either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S

Thus: P2c is true, and prop (n, v) chosen Show by induction that all proposals (m, u), where $m \geq n$, have value $u=v$

Induction base

Inspect proposal (n, u).
Since (n, v) chosen \& proposals are unique, $\mathrm{u}=\mathrm{v}$

Round	a_{1}	a_{2}	a_{3}
5			
4			
3			
2	V	V	
1	w	\perp	\perp
0	\perp	\perp	\perp

Induction step

- Assume proposals $n, n+1, n+2, \ldots, m$ have value v (ind.hypothesis)
- Show proposal $(\mathrm{m}+1, \mathrm{u})$ has $\mathrm{u}=\mathrm{v}$
- u is the value of the highest proposal among all proposals less than $m+1$ accepted by acceptors in S
- By the induction hypothesis, all proposals $n, . . ., m$ have value v . Majority of prop $\mathrm{m}+1$ intersects with majority of prop n, thus $u=v$

Round	a_{1}	a_{2}	a_{3}
5			
4			V
3		V	
2	V	V	
1	w	\perp	\perp
0	\perp	\perp	\perp

Agreement Satisfied

This algorithm satisfies P2c

- accept(n, v) only issued if a majority S responded to prepare(n), s.t. for each p_{i} in S :
- a) either: p_{i} hadn't accepted any prop less than n, or
-b) v is value of highest proposal less than n accepted by p_{i}
- By their promise, a) and b) will not change
- prepare(n) often called read(n)
- $\operatorname{accept}(\mathrm{n}, \mathrm{v})$ often called write(n, v)

Agreement

- P2c. If (n, v) is issued, there is a majority of acceptors S s.t.
- a) no one in S has accepted any proposal numbered less than n, or
- b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- P2. If (n, v) is chosen, every higher proposal chosen has value v
- We proved that if P 2 c is satisfied, then P 2 is satisfied
- P2c => P2
- Thus the algorithm satisfies agreement (safety)

Obstruction Freedom and Validity

- P1. An acceptor accepts first "proposal" it receives
- P1 is satisfied because we accept
- if prepare(n) \& accept(n,v) received first
- Thus the algorithm satisfies obstruction-free progress (liveness)

