
ID2203

KTH-2022

Reliable Broadcast

Paris Carbone

Distributed Systems

Advanced Course

KTH-2022

ID2203

COURSE TOPICS

2

‣ Intro to Distributed Systems

‣ Basic Abstractions and Failure Detectors

‣ Reliable and Causal Order Broadcast

‣ Distributed Shared Memory

‣ Consensus (Paxos, Raft, etc.)

‣ Dynamic Reconfiguration

‣ Time Abstractions and Interval Clocks (Spanner etc.)

‣ Consistent Snapshotting (Stream Data Management)

‣ Distributed ACID Transactions (Cloud DBs)

ID2203

KTH-2022

Quorums

KTH-2022

ID2203

QUORUMS

• For N crash-stop processes

• Quorum is any set of majority of processes

• i.e., a set with at least ⎣N/2⎦ +1 processes

• The algorithms will rely on a majority of processes will not fail

• f < N/2 (f is the max number of faulty processes)

• f is the resilience of the algorithm

4

KTH-2022

ID2203

QUORUMS CRASH-STOP/RECOVERY MODEL - F < N/2

Two quorums always intersect in at least ONE process

5

faulty

correct

quorums

KTH-2022

ID2203

There is at least ONE quorum with only correct processes

6

faulty

correct

quorums

QUORUMS CRASH-STOP/RECOVERY MODEL - F < N/2

KTH-2022

ID2203

There is at least ONE correct process in each quorum

7

faulty

correct

quorums

QUORUMS CRASH-STOP/RECOVERY MODEL - F < N/2

KTH-2022

ID2203

QUORUMS

Quorums used in Fail-Silent and Fail-Noisy algorithms

A process never waits for messages from more than ⎣N/2⎦ + 1
(different) processes

8

faulty

correct quorums

KTH-2022

ID2203

LET’S DEFINE OUR BUNDLES

9

Network

 (TCP, UDT etc.)

Clock

Scheduler

Failure DetectorsChannels

Event-Based Component Model

Broadcast Shared Memory

Consensus Atomic Commit

KTH-2022

ID2203

Crash-Stop Failure Model

LET’S MAKE SOME BUNDLES

10

Perfect FD (P)

Perfect Link (pl)

Fail-Stop

Perfect Link (pl)

Fail-Silent

Perfect Link (pl)

Fail-Noisy

Eventually Perfect FD (◊P)

Synchronous Model Asynchronous Model Partially Synchronous
Model

KTH-2022

ID2203

Crash-Stop Failure Model

THE FAIL-STOP

11

Perfect FD (P)

Perfect Link (pl)

Fail-Stop

Synchronous Model

• How we work with it

• Local algorithms can track the set of

correct processes at any time.

• Without violating liveness properties: use

• Request/Reply protocols.

• Wait for correct processes to reply.

KTH-2022

ID2203

Crash-Stop Failure Model

THE FAIL-SILENT

12

• How we work with it

• Failure detection is impossible.

• Correctness assumptions: a majority of

processes are always correct.

• Protocols work with majority quorums.

• Expect at least ⌈n/2⌉+1 responses.

Perfect Link (pl)

Fail-Silent

Asynchronous Model

KTH-2022

ID2203

Crash-Stop Failure Model

THE FAIL-NOISY

13

• Key ideas:

• To guarantee safety properties any
algorithm has to assume the failure
detector can be inaccurate.

• Eventual strong accuracy is only used to
guarantee liveness.

Quorum-based ideas also apply here.

Perfect Link (pl)

Fail-Noisy

Eventually Perfect FD (◊P)

Partially Synchronous
Model

KTH-2022

ID2203

Crash-Recovery Model

A FAIL-RECOVERY BUNDLE

14

• Key ideas:

• Relies often on a persistent memory to store
and retrieve critical information

• After recovery a process may contact other
process to retrieve up to date state information

• Some algorithms relax the reliability
conditions on channels allowing message loss/
duplication/reordering

Stubborn Link (sl)

Fail-Recovery

Partially Synchronous
Model

Persistent Link (logl)

…

ID2203

KTH-2022

 Broadcast Abstractions

KTH-2022

ID2203

BROADCAST SERVICES

Send a message to a group of processes

16

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

deliver(p1,m)

deliver(p1,m)

KTH-2022

ID2203

UNRELIABLE BROADCAST

17

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

crash event

KTH-2022

ID2203

RELIABLE BROADCAST ABSTRACTIONS

• Best-effort broadcast

• Guarantees reliability only if sender is correct

• Reliable broadcast

• Guarantees reliability independent of whether sender is correct

• Uniform reliable broadcast

• Also considers behaviour of failed nodes

• FIFO reliable broadcast

• Reliable broadcast with FIFO delivery order

• Causal reliable broadcast

• Reliable broadcast with causal delivery order

18

KTH-2022

ID2203

RELIABLE BROADCAST ABSTRACTIONS

• Probabilistic reliable broadcast

• Guarantees reliability with high probability

• Scales to large number of nodes

• Total order (atomic) reliable broadcast

• Guarantees reliability and same order of delivery

19

ID2203

KTH-2022

Specification of Broadcast
Abstractions

KTH-2022

ID2203

BEST-EFFORT BROADCAST (BEB)

• Instance beb

• Events

• Request: 〈beb Broadcast | m〉

• Indication: 〈beb Deliver | src, m〉

• Properties: BEB1, BEB2, BEB3

21

KTH-2022

ID2203

BEST-EFFORT BROADCAST (BEB)

• Intuitively: everything perfect unless sender crash

• Properties

• BEB1. Best-effort-Validity: If pi and pj are correct, then any
broadcast by pi is eventually delivered by pj

• BEB2. No duplication: No message delivered more than once

• BEB3. No creation: No message delivered unless broadcast

22

KTH-2022

ID2203

BEB EXAMPLE

Is this allowed?

23

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

No

KTH-2022

ID2203

BEB EXAMPLE (2)

Is this allowed?

24

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

Yes

KTH-2022

ID2203

RELIABLE BROADCAST

• BEB gives no guarantees if sender crashes

• Strengthen to give guarantees if sender crashes

• Reliable Broadcast Intuition

• Same as BEB, plus

• If sender crashes:

• ensure all or none of the correct nodes get msg

25

KTH-2022

ID2203

RELIABLE BROADCAST (RB)

Instance rb

Events

 Request: 〈rb Broadcast | m〉

 Indication: 〈rb Deliver | src, m〉

Properties: RB1, RB2, RB3, RB4

26

KTH-2022

ID2203

RELIABLE BROADCAST PROPERTIES

• Properties

• RB1 = BEB1. Validity

• RB2 = BEB2. No duplication

• RB3 = BEB3. No creation

• RB4. Agreement.

• If a correct process delivers m, then every correct
process delivers m

27

KTH-2022

ID2203

REFINING CORRECTNESS

Can weaken RB1 without any effect

28

RB1 = BEB1 Validity

❑ If pi and pj are correct, then any

broadcast by pi is eventually
delivered by pj

RB2 = BEB2. No duplication

RB3 = BEB3. No creation

RB4. Agreement.

❑ If a correct node delivers m, then

every correct node delivers m

RB1 Validity.

❑ If correct pi broadcasts m, pi itself

eventually delivers m

RB2 = BEB2. No duplication

RB3 = BEB3. No creation

RB4. Agreement.

❑ If a correct node delivers m, then

every correct process delivers m

Old Validity ←equivalent with→ New Validity

KTH-2022

ID2203

RB EXAMPLE

Is this allowed?

29

p1

p2

p3

broadcast(m)

p4

Yes

KTH-2022

ID2203

RB EXAMPLE

Is this allowed?

30

p1

p2

p3

broadcast(m)

p4

Yes

deliver(p1,m)

KTH-2022

ID2203

RB EXAMPLE

Is this allowed?

31

p1

p2

p3

broadcast(m)

p4

No

deliver(p1,m)

KTH-2022

ID2203

RB EXAMPLE

Is this allowed?

32

p1

p2

p3

broadcast(m)

deliver(p1,m)

p4
deliver(p1,m)

Yes
deliver(p1,m)

KTH-2022

ID2203

UNIFORM RELIABLE BROADCAST

• Assume sender broadcasts message

• Sender fails

• No correct process delivers message

• Some failed processes deliver message

• Assume the broadcast enforces

• Printing a message on paper

• Withdrawing money from account

• Uniform reliable broadcast intuition

• If a failed node delivers, everyone must deliver…

• 	 At least correct nodes, we cannot revive the dead…

33

KTH-2022

ID2203

UNIFORM BROADCAST (URB)

Events

 Request: 〈urb Broadcast | m〉

 Indication: 〈urb Deliver | src, m〉

Properties:

URB1

URB2

URB3

URB4

34

KTH-2022

ID2203

UNIFORM BROADCAST PROPERTIES

Properties

URB1 = RB1.

URB2 = RB2.

URB3 = RB3.

URB4. Uniform Agreement: For any message
m, if a process delivers m, then every correct

process delivers m

35

Wanted: Dead &
Alive!

ID2203

KTH-2022

 Broadcast Abstractions

ID2203

KTH-2022

Implementation of Broadcast

Abstractions

KTH-2022

ID2203

IMPLEMENTING BEB

• Use Perfect channel abstraction

• Upon 〈beb Broadcast | m〉 send message m to all

processes (for-loop)

• Correctness

• If sender doesn’t crash, every other correct process

receives message by perfect channels (Validity)

• No creation & No duplication already guaranteed by

perfect channels

38

ID2203

KTH-2022

Fail-Stop 

Lazy Reliable Broadcast

KTH-2022

ID2203

FAIL-STOP: LAZY RELIABLE BROADCAST

• Requires perfect failure detector (P)

• To broadcast m:

• best-effort broadcast m

• When get beb Deliver

• Save message, and

• rb Deliver message

• If sender s crash, detect & relay msgs from s to all

• case 1: get m from s, detect crash s, redistribute m

• case 2: detect crash s, get m from s, redistribute m

• Filter duplicate messages before delivery
40

KTH-2022

ID2203

FAIL-STOP: LAZY RELIABLE BROADCAST

If sender s crashes, detect & relay msgs from s to all

case 1: get m from s, detect crash s, redistribute m

case 2: detect crash s, get m from s, redistribute m

Why case 2? [d]

41

KTH-2022

ID2203

LAZY RELIABLE BROADCAST

42

p1

p2

p3

broadcast(m)

deliver(p1,m)

deliver(p2,[p1,m])

crash(p1)
broadcast([p1,m])

Case 2

KTH-2022

ID2203

FAIL-STOP LAZY RELIABLE BROADCAST

43

rb

beb P

broadcast(m)

broadcast(m)

deliver(pi,m)

crash(pj)deliver(pi,m)

KTH-2022

ID2203

LAZY RELIABLE BROADCAST

Implements: ReliableBroadcast (rb)

Uses:

BestEffortBroadcast (beb)

PerfectFailureDetector (P)

upon event 〈Init〉 do

 delivered := ∅

 correct := Π

 forall pi ∈ Π do from[pi] := ∅

upon event 〈rb Broadcast | m〉 do

trigger 〈beb Broadcast | (DATA, self, m)〉

44

for filtering
duplicates

storage for saved
messages

KTH-2022

ID2203

LAZY RELIABLE BROADCAST (2)

upon event 〈crash | pi〉 do

correct := correct \ {pi}

forall (sm,m) ∈ from[pi] do

	 	 trigger 〈beb Broadcast | (DATA, sm ,m)〉

upon event 〈beb Deliver | pi, (DATA, sm , m)〉 do

if m ∉ delivered then

	 delivered := delivered ∪ {m}

	 from[pi] := from[pi] ∪ { (sm, m)}

	 trigger 〈rb Deliver | sm , m〉

	 if pi ∉ correct then

	 	 	 trigger 〈beb Broadcast |(DATA, sm, m) 〉

45

Avoid duplicates

Store for future

Case 1: redistribute
anything we have
from failed node

Case 2: redistribute

KTH-2022

ID2203

RB EXAMPLE

Which case?

46

Case 1

p1

p2

p3

broadcast(m)

deliver(p1,m)

deliver(p2,[p1,m])

crash(p1) broadcast([p1,m])

KTH-2022

ID2203

CORRECTNESS OF LAZY RB

• RB1-RB3 satisfied by BEB

• Need to prove RB4

• If a correct node delivers m, then every correct node delivers m

• Assume Correct pk delivers message bcast by pi

• If pi is correct, BEB ensures correct delivery

• If pi crashes,

• pk detects this (completeness)

• pk uses BEB to ensure (BEB1) every correct node gets it

47

ID2203

KTH-2022

Measuring Performance

KTH-2022

ID2203

MESSAGE COMPLEXITY

• The number of messages required to terminate an
operation of an abstraction

• Lazy reliable broadcast

• The number of messages initiated by broadcast(m)

• Until a deliver(src, m) event is issued at each process

• Bit complexity

• Number of bits sent, if messages can vary in size

49

KTH-2022

ID2203

TIME COMPLEXITY ~ #ROUNDS

• One time unit in an Execution E is the longest message delay in E

• Time Complexity is Maximum time taken by any execution of the

algorithm under the assumptions

• A process can execute any finite number of actions (events) in zero

time

• The time between send(m)i,j and deliver(m)i,j is at most one time unit

• In most algorithms we study we assume all communication steps takes one
time unit. We also call this a round or step.

50

KTH-2022

ID2203

BEST EFFORT BROADCAST
Takes one time unit from broadcast(m)p to last deliver(p,m)

We also call it one communication step / round.

51

p1

p2

p3

bcast(m)

p4

d(p1,m)bebd(p1,m)pls(p1,m) s(p2,m) s(p2,m)

d(p1,m)bebd(p1,m)pl

d(p1,m)bebd(p1,m)pl

d(p1,m)bebd(p1,m)pl

s(p2,m)

KTH-2022

ID2203

COMPLEXITY OF LAZY RELIABLE BROADCAST

• Assume N processes

• Message complexity

• Best case: O(N) messages

• Worst case: O(N2) messages

• Time complexity

• Best case: 1 time unit

• Worst case: 2 time units

52

ID2203

KTH-2022

Fail-Silent  

Eager Reliable Broadcast

KTH-2022

ID2203

EAGER RELIABLE BROADCAST

What happens if we replace P with ◊P? [d]

• Only affects performance

• Only affects correctness

• No effect

• Affects performance and correctness

54

KTH-2022

ID2203

EAGER RELIABLE BROADCAST

Can we modify Lazy RB to not use P? [d]

Just assume all processes failed

BEB Broadcast as soon as you get a msg

55

KTH-2022

ID2203

EAGER RELIABLE BROADCAST

Uses: BestEffortBroadcast (beb)

upon event 〈Init〉 do

 delivered := ∅

upon event 〈rb Broadcast | m〉 do

delivered := delivered ∪ {m}

trigger 〈rb Deliver | self , m〉

trigger 〈beb Broadcast | (DATA, self, m)〉

upon event 〈beb Deliver |pi, (DATA, sm , m)〉 do

if m ∉ delivered then

	 delivered := delivered ∪ {m}

	 trigger 〈rb Deliver | sm , m〉

	 trigger 〈beb Broadcast | (DATA, sm, m)〉

56

Immediately deliver
Immediately BEB

broadcast

Immediately deliver
Immediately BEB

broadcast

KTH-2022

ID2203

CORRECTNESS OF EAGER RB

• RB1-RB3 satisfied by BEB

• Need to prove RB4

• If a correct process delivers m, then every correct
node delivers m

• Assume correct pk delivers message bcast by pi

• pk uses BEB to ensure (BEB1) every correct process gets it

57

ID2203

KTH-2022

Uniform Reliable Broadcast

KTH-2022

ID2203

UNIFORMITY

• Is the proposed algorithm also uniform? [d]

• Uniformity necessitates

• If a failed process delivers a message m

• then every correct node delivers m

59

KTH-2022

ID2203

UNIFORMITY

• No.

• Sender p immediately RB delivers and
crashes

• Only p delivered message

• upon event 〈rb Broadcast | m〉 do

• delivered := delivered ∪ {m}

• trigger 〈rb Deliver | self , m〉

• trigger 〈beb Broadcast | (DATA, self, m)〉

60

KTH-2022

ID2203

UNIFORM EAGER RB
• Necessary condition for uniform RB delivery

• All correct processes will get the msg

• How do we know the correct processes got msg? [d]

• Messages are pending until all correct processes get it

• Collect acks from processes that got msg

• Deliver once all correct processes acked

• Use perfect FD

• function canDeliver(m):

• return correct ⊆ ack[m]

61

Use vector ack[m] at pi: the
set of processes that acked m

KTH-2022

ID2203

UNIFORM EAGER RB IMPLEMENTATION

• upon event 〈urb Broadcast | m〉 do

• pending := pending ∪ {(self, m)}

• trigger 〈beb Broadcast | (DATA, self, m)〉

• upon event 〈beb Deliver | pi, (DATA, sm, m)〉 do

• ack[m] := ack[m] ∪ {pi}

• if (sm , m) ∉ pending then

• pending := pending ∪ (sm, m)

• trigger 〈beb Broadcast | (DATA, sm , m)〉

• Upon exists (sm,m)∈pending s.t.	 	 	 	

• canDeliver(m) and m ∉ delivered do

• delivered := delivered ∪ {m}

• trigger 〈urb Deliver | sm, m〉

62

remember sent messages

pi obviously got m
avoid resending

deliver when all correct
nodes have acked

KTH-2022

ID2203

URB EAGER ALGORITHM EXAMPLE

63

p1

p2

p3

urb-cast(m)

beb-d(p1,(p1,m))

beb-d(p2,(p1,m)) urb-d(p1,m)beb-d(p3,(p1,m))beb-d(p1,(p1,m))

beb-d(p2,(p1,m)) beb-d(p3,(p1,m)) urb-d(p1,m)

beb-d(p2,(p1,m)) beb-d(p3,(p1,m)) beb-d(p1,(p1,m)) urb-d(p1,m)

KTH-2022

ID2203

CORRECTNESS OF UNIFORM RB

• No creation from BEB

• No duplication by using delivered set

• Lemma

• If a correct process pi bebDelivers m, then pi eventually urbDelivers m

• Proof

• Correct process pi bebBroadcasts m as soon as it gets m

• By BEB1 every correct process gets m and bebBroadcasts m

• pi gets bebDeliver(m) from every correct process by BEB1

• By completeness of P, it will not wait for dead nodes forever

• canDeliver(m) becomes true and pi delivers m

64

KTH-2022

ID2203

CORRECTNESS OF UNIFORM RB

Validity

If sender s is correct, it’ll by validity (BEB1)
bebDeliver m

By the lemma, it will eventually urbDeliver(m)

65

KTH-2022

ID2203

CORRECTNESS OF UNIFORM RB

• Uniform agreement

• Assume some process (possibly failed) URB delivers m

• Then canDeliver(m) was true,

by accuracy of P every correct process has BEB delivered m

• By lemma each of the nodes that BEB delivered m will URB
deliver m

66

ID2203

KTH-2022

Uniform Broadcast 

Fail-Silent

KTH-2022

ID2203

HOW USEFUL IS THE UNIFORM ALGORITHM?

• Strong failure detectors necessary for URB?

• No, we’ll provide RB for fail-silent model

• Assume a majority of correct nodes

• Majority = ⎣n/2⎦+1, i.e. 6 of 11, 7 of 12…

• Every node eagerly BEB broadcast m

• URB deliver m when received m from a majority

68

KTH-2022

ID2203

MAJORITY-ACK UNIFORM RB

• Same algorithm as uniform eager RB

• Replace one function

• function canDeliver(m)

• return |ack[m]|>n/2

• Agreement (main idea)

• If a process URB delivers, it got ack from majority

• In that majority, one node, p, must be correct

• p will ensure all correct processes BEB deliver m

• The correct processes (majority) will ack and URB deliver

69

majority has
acknowledged m

KTH-2022

ID2203

MAJORITY-ACK UNIFORM RB

Validity

If correct sender sends m

All correct nodes BEB deliver m

All correct nodes BEB broadcast

Sender receives a majority of acks

Sender URB delivers m

70

KTH-2022

ID2203

RESILIENCE

• The maximum number of faulty processes an
algorithm can handle

• The Fail-Silence algorithm

• Has resilience less than N/2

• The Fail-Stop algorithm

• Has resilience = N − 1

71

