

Advanced Course

Distributed Systems

Logical Clocks

a short intervention

Paris Carbone

LOGICAL CLOCKS

- A clock is function **t** from the events to a totally order set such that for events *a* and *b*
 - if $a \rightarrow b$ then $\mathbf{t}(a) < \mathbf{t}(b)$

We are interested in → being the happen-before relation

CAUSAL ORDER (HAPPEN BEFORE)

- The relation \rightarrow_{β} on the events of an execution (or trace β), called also causal order, is defined as follows
 - If a occurs before b on the same process, then $a \rightarrow_{\beta} b$
 - If a is a send(m) and b deliver(m), then $a \rightarrow_{\beta} b$
 - $a \rightarrow_{\beta} b$ is transitive
 - i.e. If $a \rightarrow_{\beta} b$ and $b \rightarrow_{\beta} c$ then $a \rightarrow_{\beta} c$
- Two events, a and b, are concurrent if not a \rightarrow_{β} b and not b \rightarrow_{β} a
- a||b

CAUSAL ORDER (HAPPEN BEFORE)

OBSERVING CAUSALITY

So causality is all that matters...

...how to locally tell if two events are causally related?

LAMPORT CLOCKS AT PROCESS P

- Each process has a local logical clock, kept in variable $\mathbf{t}_{\mathbf{p}}$, initially $\mathbf{t}_{\mathbf{p}} = 0$
 - A process p piggybacks (t_p, p) on every message sent
- On internal event *a*:
 - $\mathbf{t_p} := \mathbf{t_p} + 1$; perform internal event a
- On send event message m:
 - $\mathbf{t_p} := \mathbf{t_p} + 1$; send(m, $(\mathbf{t_p}, p)$)
- On delivery event a of m with timestamp (t_q, q) from q:
 - $\mathbf{t_p} := \max(\mathbf{t_p}, \mathbf{t_q}) + 1$; perform delivery event a

LAMPORT CLOCKS (2)

Observe the timestamp (t, p) is unique

Comparing two timestamps (t_p,p) and (t_q,q)

$$(t_p,p)<(t_q,q)$$
 iff $(t_p< t_q \text{ or } (t_p=t_q \text{ and } p< q))$

i.e. break ties using process identifiers

e.g.
$$(5,p_5) < (7,p_2), (4,p_2) < (4,p_3)$$

LAMPORT CLOCKS (2)

Lamport logical clocks guarantee that:

If
$$a \rightarrow_{\beta} b$$
, then $\mathbf{t}(a) < \mathbf{t}(b)$,

where $\mathbf{t}(a)$ is Lamport clock of event a

- events a and b are on the same process p, tp is strictly increasing, so if a is before b, then t(a) < t(b)
- a is a send event with t_q and b is deliver event, t(b) is at least one larger than t_q (t(a))
- transitivity of t(a) < t(b) < t(c) implies the transitivity condition of the happen before relation

LAMPORT LOGICAL CLOCKS

Lamport logical clocks guarantee that:

If
$$a \rightarrow_{\beta} b$$
, then $\mathbf{t}(a) < \mathbf{t}(b)$,

if
$$\mathbf{t}(a) \ge \mathbf{t}(b)$$
, then not $(a \rightarrow_{\beta} b)$

Vector Clocks

VECTOR CLOCKS

- The happen-before relation is a partial order
- In contrast logical clocks are total
 - Information about non-causality is lost
 - We cannot tell by looking to the timestamps of event *a* and *b* whether there is a causal relation between the events, or they are concurrent
- Vector clocks guarantee that:
 - if $\mathbf{v}(a) < \mathbf{v}(b)$ then $a \rightarrow_{\beta} b$, in addition to
 - if $a \rightarrow_{\beta} b$ then $\mathbf{v}(a) < \mathbf{v}(b)$
 - where $\mathbf{v}(a)$ is a vector clock of event a

Non-causality and Concurrent events

- Two events a and b are concurrent $(a \mid_{\beta} b)$ in an execution E $(\text{trace}(E) = \beta)$ if
 - **not** $a \rightarrow_{\beta} b$ and **not** $b \rightarrow_{\beta} a$
- Computation theorem implies that if $(a \mid \mid_{\beta} b)$ in β then there are two executions (with traces β_1 and β_2) that are similar where a occurs before b in β_1 , b occurs before a in β_2

Non-causality and Concurrent events

VECTOR CLOCK DEFINITION

• Vector clock for an event a

$$\bullet \mathbf{v}(a) = (x_1, ..., x_n)$$

- x_i is the number of events at p_i that happens-before a
- for each such event e: $e \rightarrow a$

VECTOR TIMESTAMPS

- Processes $p_1, ..., p_n$
- Each process p_i has local vector \mathbf{v} of size \mathbf{n} (number of processes)
 - v[i] = 0 for all i in 1...n
 - Piggyback v on every sent message
- For each transition (on each event) update local \mathbf{v} at p_i :
 - $\mathbf{v}[i] := \mathbf{v}[i] + 1$ (internal, send or deliver)
 - $\mathbf{v}[j] := \max(\mathbf{v}[j], \mathbf{v}_{\mathbf{q}}[j])$, for all $j \neq i$ (deliver)
 - . where $\mathbf{v}_{\mathbf{q}}$ is clock in message received from process q

COMPARING VECTOR CLOCKS

- $V_p \le V_q$ iff
 - $v_p[i] \le v_q[i]$ for all i
- $v_p < v_q$ iff
 - $v_p \le v_q$ and for some i, $v_p[i] < v_q[i]$
- v_p and v_q are concurrent $(v_p || v_q)$ iff
 - not $v_p < v_q$, and not $v_q < v_p$
- Vector clocks guarantee
 - If v(a) < v(b) then $a \rightarrow b$, and
 - If $a \rightarrow b$, then v(a) < v(b)
 - where v(a) is the vector clock of event a

$$[3,0,0] \leq [3,1,0]$$

$$[3,1,0] \Leftrightarrow [4,0,0]$$

EXAMPLE OF VECTOR TIMESTAMPS

time

VECTOR TIMESTAMPS

For any events a and b, and trace β :

 $\mathbf{v}(a)$ and $\mathbf{v}(b)$ are incomparable if and only if a||b

 $\mathbf{v}(a) < \mathbf{v}(b)$ if and only if $a \rightarrow b$

EXAMPLE OF VECTOR TIMESTAMPS

Great! But cannot be done with smaller vectors than size n, for n nodes

PARTIAL AND TOTAL ORDERS

Only a partial order or a total order? [d]

- the relation \rightarrow_{β} on events in executions
 - Partial: \rightarrow_{β} doesn't order concurrent events
- the relation < on Lamport logical clocks
 - Total: any two distinct clock values are ordered (adding pid)
- the relation < on vector timestamps
 - Partial: timestamp of concurrent events not ordered

LOGICAL CLOCK VS. VECTOR CLOCK

Logical clock

If
$$a \rightarrow_{\beta} b$$
 then $t(a) < t(b)$ (1)

Vector clock

If
$$a \rightarrow_{\beta} b$$
 then $v(a) < v(b)$ (1)

If
$$v(a) < v(b)$$
 then $a \rightarrow_{\beta} b$ (2)

Which of (1) and (2) is more useful? [d]

What extra information do vector clocks give? [d]

