## Advanced Course

## Distributed Systems

## Logical Clocks

a short intervention


Paris Carbone

## LOgical Clocks

- A clock is function $\mathbf{t}$ from the events to a totally order set such that for events $a$ and $b$
. if $a \rightarrow b$ then $\mathbf{t}(a)<\mathbf{t}(b)$
- We are interested in $\rightarrow$ being the happen-before relation


## CaUsAL ORDER (HAPPEN beFORE)

- The relation $\rightarrow_{\beta}$ on the events of an execution (or trace $\beta$ ), called also causal order, is defined as follows
- If $a$ occurs before $b$ on the same process, then $a \rightarrow_{\beta} b$
- If $a$ is a send $(m)$ and $b$ deliver $(m)$, then $a \rightarrow_{\beta} b$
- $\mathrm{a} \rightarrow_{\beta} \mathrm{b}$ is transitive
- i.e. If $a \rightarrow_{\beta} b$ and $b \rightarrow_{\beta} c$ then $a \rightarrow_{\beta} c$
- Two events, $a$ and $b$, are concurrent if not $a \rightarrow_{\beta} b$ and not $b \rightarrow_{\beta} a$
- a||b


## CaUsAL ORDER (HAPPEN beFORE)


ab

## ObSERVING CAUSALITY

So causality is all that matters...
...how to locally tell if two events are causally related?

## LAMPORT CLOCKS AT PROCESS P

- Each process has a local logical clock, kept in variable $\mathbf{t}_{\mathrm{p}}$, initially $\mathbf{t}_{\mathrm{p}}=0$
- A process p piggybacks ( $\mathbf{t}_{\mathrm{p}}, \mathrm{p}$ ) on every message sent
- On internal event $a$ :
- $\mathbf{t}_{\mathrm{p}}:=\mathbf{t}_{\mathrm{p}}+1$; perform internal event $a$
- On send event message m:
- $\mathbf{t}_{\mathrm{p}}:=\mathbf{t}_{\mathrm{p}}+1 ; \operatorname{send}\left(\mathrm{m},\left(\mathbf{t}_{\mathrm{p}}, \mathrm{p}\right)\right)$
- On delivery event $a$ of $m$ with timestamp $\left(\mathrm{t}_{\mathrm{q}}, \mathrm{q}\right)$ from q :
- $\mathbf{t}_{\mathbf{p}}:=\max \left(\mathbf{t}_{\mathbf{p}}, \mathbf{t}_{\mathbf{q}}\right)+1 ;$ perform delivery event $a$


## LAMPORT CLOCKS (2)

## Observe the timestamp ( $\mathrm{t}, \mathrm{p}$ ) is unique

Comparing two timestamps $\left(\mathrm{t}_{\mathrm{p}}, \mathrm{p}\right)$ and $\left(\mathrm{t}_{\mathrm{q}}, \mathrm{q}\right)$

$$
\left(\mathrm{t}_{\mathrm{p}}, \mathrm{p}\right)<\left(\mathrm{t}_{\mathrm{q}}, \mathrm{q}\right) \text { iff }\left(\mathrm{t}_{\mathrm{p}}<\mathrm{t}_{\mathrm{q}} \text { or }\left(\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{\mathrm{q}} \text { and } \mathrm{p}<\mathrm{q}\right)\right)
$$

i.e. break ties using process identifiers

$$
\text { e.g. }\left(5, \mathrm{p}_{5}\right)<\left(7, \mathrm{p}_{2}\right),\left(4, \mathrm{p}_{2}\right)<\left(4, \mathrm{p}_{3}\right)
$$

## LAMPORT CLOCKS (2)

Lamport logical clocks guarantee that:

$$
\text { If } a \rightarrow_{\beta} b \text {, then } \mathbf{t}(a)<\mathbf{t}(b),
$$

where $\mathbf{t}(a)$ is Lamport clock of event $a$

- events $a$ and $b$ are on the same process $p, t_{p}$ is strictly increasing, so if $a$ is before $b$, then $t(a)<t(b)$
- $a$ is a send event with $t_{q}$ and $b$ is deliver event, $t(b)$ is at least one larger than $t_{q}(t(a))$
- transitivity of $\mathrm{t}(\mathrm{a})<\mathrm{t}(\mathrm{b})<\mathrm{t}(\mathrm{c})$ implies the transitivity condition of the happen before relation


## LAMPORT LOGICAL CLOCKS



Lamport logical clocks guarantee that:

$$
\begin{aligned}
& \text { If } a \rightarrow_{\beta} b \text {, then } \mathbf{t}(a)<\mathbf{t}(b), \\
& \text { if } \mathbf{t}(a) \geq \mathbf{t}(b) \text {, then } \operatorname{not}\left(a \rightarrow_{\beta} b\right)
\end{aligned}
$$

Vector Clocks

## VECTOR CLOCKS

- The happen-before relation is a partial order
- In contrast logical clocks are total
- Information about non-causality is lost
- We cannot tell by looking to the timestamps of event $a$ and $b$ whether there is a causal relation between the events, or they are concurrent
- Vector clocks guarantee that:
- if $\mathbf{v}(a)<\mathbf{v}(b)$ then $a \rightarrow_{\beta} b$, in addition to
- if $a \rightarrow_{\beta} b$ then $\mathbf{v}(a)<\mathbf{v}(b)$
- where $\mathbf{v}(a)$ is a vector clock of event $a$


## Non-CaUsality and Concurrent events

- Two events $a$ and $b$ are concurrent $\left(a \|_{\beta} b\right)$ in an execution $E$ (trace $(\mathrm{E})=\beta$ ) if
- not $a \rightarrow_{\beta} b$ and not $b \rightarrow_{\beta} a$
- Computation theorem implies that if $\left(a \|_{\beta} b\right)$ in $\beta$ then there are two executions (with traces $\beta_{1}$ and $\beta_{2}$ ) that are similar where $a$ occurs before $b$ in $\beta_{1}, b$ occurs before $a$ in $\beta_{2}$


## Non-CaUsality and Concurrent events



## VECTOR CLOCK DEFINITION

- Vector clock for an event $\boldsymbol{a}$
- $\mathbf{v}(a)=\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$
- $x_{\mathrm{i}}$ is the number of events at $\mathrm{p}_{\mathrm{i}}$ that happens-before $a$
- for each such event e: e $\rightarrow a$



## Vector Timestamps

- Processes $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$
- Each process $p_{i}$ has local vector $\mathbf{v}$ of size $\mathbf{n}$ (number of processes)
- $\mathbf{v}[\mathrm{i}]=0$ for all i in $1 . . . n$
- Piggyback v on every sent message
. For each transition (on each event) update local $\mathbf{v}$ at $\mathrm{p}_{\mathrm{i}}$ :
- $\mathbf{v}[\mathrm{i}]:=\mathbf{v}[\mathrm{i}]+1$ (internal, send or deliver)
- $\mathbf{v}[\mathrm{j}]:=\max \left(\mathbf{v}[\mathrm{j}], \mathbf{v}_{\mathbf{q}}[\mathrm{j}]\right)$, for all $\mathrm{j} \neq \mathrm{i}$ (deliver)
- where $\mathbf{v}_{\mathbf{q}}$ is clock in message received from process q


## Comparing Vector Clocks

- $\mathrm{v}_{\mathrm{p}} \leq \mathrm{v}_{\mathrm{q}}$ iff
- $\mathrm{v}_{\mathrm{p}}[\mathrm{i}] \leq \mathrm{v}_{\mathrm{q}}[\mathrm{i}]$ for all i
- $\mathrm{v}_{\mathrm{p}}<\mathrm{v}_{\mathrm{q}}$ iff
- $\mathrm{v}_{\mathrm{p}} \leq \mathrm{v}_{\mathrm{q}}$ and for some $\mathrm{i}, \mathrm{v}_{\mathrm{p}}[\mathrm{i}]<\mathrm{v}_{\mathrm{q}}[\mathrm{i}]$
$[3,0,0] \leq[3,1,0]$
- $\mathrm{v}_{\mathrm{p}}$ and $\mathrm{v}_{\mathrm{q}}$ are concurrent $\left(\mathrm{v}_{\mathrm{p}} \| \mathrm{v}_{\mathrm{q}}\right)$ iff
- not $\mathrm{v}_{\mathrm{p}}<\mathrm{v}_{\mathrm{q}}$, and not $\mathrm{v}_{\mathrm{q}}<\mathrm{v}_{\mathrm{p}}$
[3,0,0] < [3,1,0]
[3,1,0] <> [4,0,0]
- Vector clocks guarantee
- If $v(a)<v(b)$ then $a \rightarrow b$, and
- If $a \rightarrow b$, then $v(a)<v(b)$
- where $v(a)$ is the vector clock of event a


## Example of Vector Timestamps



## Vector Timestamps



For any events a and b , and trace $\beta$ :

$$
\begin{aligned}
& \mathbf{v}(\mathrm{a}) \text { and } \mathbf{v}(\mathrm{b}) \text { are incomparable if and only if allb } \\
& \mathbf{v}(\mathrm{a})<\mathbf{v}(\mathrm{b}) \text { if and only if } \mathrm{a} \rightarrow \mathrm{~b}
\end{aligned}
$$

## Example of Vector Timestamps



Great! But cannot be done with smaller vectors than size $n$, for $n$ nodes

## Partial and Total Orders

- Only a partial order or a total order? [d]
- the relation $\rightarrow_{\beta}$ on events in executions
- Partial: $\rightarrow_{\beta}$ doesn't order concurrent events
- the relation < on Lamport logical clocks
- Total: any two distinct clock values are ordered (adding pid)
- the relation < on vector timestamps
- Partial: timestamp of concurrent events not ordered


## Logical clock vs. Vector clock

## Logical clock

$$
\begin{equation*}
\text { If } \mathrm{a} \rightarrow_{\beta} \mathrm{b} \text { then } \mathrm{t}(\mathrm{a})<\mathrm{t}(\mathrm{~b}) \tag{1}
\end{equation*}
$$

## Vector clock

If $a \rightarrow_{\beta} b$ then $v(a)<v(b)$
If $v(a)<v(b)$ then $a \rightarrow_{\beta} b$

Which of (1) and (2) is more useful? [d]

What extra information do vector clocks give? [d]

