Review

Proof Writing and Structure
Lars Kroll 〈lkroll@kth.se〉

Overview

Introduction
What is a proof?
Direct Proof
Propositions without a Hypothesis
Propositions with one or more Hypotheses
The tactic of "division into cases"
Indirect Proof
Proof by Contrapositive
Proof by Contradiction
Conclusions with Alternatives
Other Methods
Evaluating the Truth of a Proposition
Proof by Mathematical Induction
Proof by Structural Induction

Introduction

What is a proof?
A proof is sufficient evidence or a sufficient argument for the truth of a proposition.

- The purpose of a proof is to convince an audience of the veracity of a proposition.
- Proofs are most common in philosophy, law, and mathematics (and related disciplines).
- We only consider mathematical proofs here.
- Mathematical propositions are usually expressed in (mostly first-order) logic and some natural language.

Introduction

What is a proof?

- Most proofs done by humans (not machines) assume a particular context from their audience.
- For example: $\forall_{x} x=x$ assumes that you know what $=$ means in this context and that it's defined for whatever x is.
- Context is typically a particular theory (e.g., set theory), its definitions, axioms, and previously proven theorems.
- Notation can also be considered context sometimes, though it's good to be explicit if possible.

Introduction

Types of proofs
P : For every x, if $H(x)$, then $C(x)$
$P: \forall_{x} H(x) \Rightarrow C(x)$

- This is the most common structure for a mathematical proposition P.
- H is the hypothesis
- C is the conclusion
- If we prove P as it's written, we call that direct proof.
- Sometimes we prove a logically equivalent statement instead. That is called an indirect proof.
- Sometimes propositions must be shown recursively, which is called induction.

Direct Proof

Propositions without a Hypothesis
General Structure: $\forall_{x} C(x)$
Example: For all sets A and $B, A \subseteq A \cup B$.

- Setup: Let A, B be sets.
- Rewrite the conclusion (using the definition of \subseteq):
$\forall_{x \in A} x \in(A \cup B)$
- Rewrite again (using the definition of \cup):
$\forall x \in A x \in A \vee x \in B$.
Let A, B be sets. Let $a \in A$. It follows trivially that $a \in A \vee a \in B$, which is equivalent to $a \in A \cup B$.

Direct Proof

Propositions with one or more Hypotheses
General Structure: $\forall_{x} H(x) \Rightarrow C(x)$
Example: For all sets X, Y, Z, if $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$.

- Setup: Let X, Y, Z be sets.
- Use H as an assumption: Let X, Y be such that $X \subseteq Y$.
- Rewrite the hypothesis (using the definition of \subseteq): $\forall_{x \in X} x \in Y$
- Rewrite the conclusion (using the definition of \subseteq): $\forall_{z \in X \cap Z} z \in Y \cap Z$

Direct Proof

Propositions with one or more Hypotheses
For all sets X, Y, Z, if $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$.

- Setup: Let X, Y, Z be sets, such that $X \subseteq Y$.
- Definition of \subseteq on the hypothesis: $\forall_{x \in X} x \in Y$
- Definition of \subseteq on the conclusion: $\forall_{x \in X \cap Z} x \in Y \cap Z$
- If $x \in X \cap Z$ the definition of \cap implies $x \in X \wedge x \in Z$.
- Since $x \in Y$ (assumption), the definition of \cap also implies $x \in Y \cap Z$.

Direct Proof

The tactic of "division into cases"
Example ${ }^{1}$: For all sets A and B, $(A \cap B) \cup(A \cap \bar{B}) \subseteq A$.
${ }^{1} \bar{B}$ is the set of all items not in B (but in some universal set U

Direct Proof

The tactic of "division into cases"
Example: For all sets A and $B,(A \cap B) \cup(A \cap \bar{B}) \subseteq A$.

- Setup: Let A, B be sets.
- Rewrite conclusion (definition of \subseteq):
$\forall x x \in(A \cap B) \cup(A \cap \bar{B}) \Rightarrow x \in A$
- Let $x \in(A \cap B) \cup(A \cap B)$, rewrite with definition of \cup : $x \in(A \cap B) \vee x \in(A \cap \bar{B})$
- Show that it holds for either side of the V :

Case 1 : Assume $x \in(A \cap B)$, then, by definition of $\cap, x \in A$
Case 2 : Assume $x \in(A \cap \bar{B})$, then, by definition of $\cap, x \in A$

Indirect Proof

- Sometimes a direct proof approach is difficult or impossible.
- It might be easier to prove a logically equivalent proposition instead.
- We can use one (or more) of the following logical equivalences (for any logical formulae p, q, r):

$$
\begin{align*}
\neg q \rightarrow \neg p & \Longleftrightarrow p \rightarrow q \tag{1}\\
\neg p \rightarrow(q \wedge \neg q) & \Longleftrightarrow p \tag{2}\\
(p \wedge \neg q) \rightarrow r & \Longleftrightarrow p \rightarrow(q \vee r) \tag{3}
\end{align*}
$$

Indirect Proof

Proof by Contrapositive
Example: For every function $f: A \rightarrow B$ with $A, B \subseteq$ \mathbb{R}, if f is strictly increasing, then f is injective (one-to-one).

- Setup: Let f be as above, and strictly increasing (i.e. $\left.\forall_{x_{1}, x_{2} \in A} x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)\right)$.
- Direct approach: Let $x_{1}, x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. We'd need to to show that $x_{1}=x_{2}$.
- Now we are stuck, because we can't use our "strictly increasing" assumption on $f\left(x_{1}\right), f\left(x_{2}\right)$.

Indirect Proof

Proof by Contrapositive
Example: For every function $f: A \rightarrow B$ with $A, B \subseteq$ \mathbb{R}, if f is strictly increasing, then f is injective (one-to-one).

- Setup: Let f be as above, and strictly increasing.
- Indirect approach (assume the contrapositive (1)):

Let $x_{1} \neq x_{2} \in A$
Now we need to to show that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

- Since $(\mathbb{R},<)$ is a strict total order, it must be that $x_{1}<x_{2} \vee x_{2}<x_{1}$.
- Assume (WLOG) $x_{1}<x_{2}$, then, since f is strictly increasing, $f\left(x_{1}\right)<f\left(x_{2}\right)$ and thus $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Indirect Proof

Proof by Contradiction
Example: For all sets A and B, if $A \subseteq B$, then $A \cap \bar{B}=\emptyset$.

- Setup: Let A, B be sets. Assume $A \subseteq B$.
- Direct approach - show mutual inclusion: $A \cap \bar{B} \subseteq \emptyset \wedge \emptyset \subseteq A \cap \bar{B}$
- $\emptyset \subseteq A \cap \bar{B}$ is trivially true.
- But how would we show $A \cap \bar{B} \subseteq \emptyset$? $x \in \emptyset$ is not an assumption we can make.
- Stuck again...

Indirect Proof

Proof by Contradiction
Example: For all sets A and B, if $A \subseteq B$, then $A \cap \bar{B}=\emptyset$.

- Setup: Let A, B be sets. Assume $A \subseteq B$.
- Indirect approach: Assume $A \cap \bar{B} \neq \emptyset$. Try to show that $A \cap \bar{B} \neq \emptyset$ leads to a contradiction (2) with $A \subseteq B$.
- Let $x \in A \cap \bar{B}$. Then $x \in A \wedge x \in \bar{B}$.
- By our hypothesis $x \in A$ implies $x \in B$.
- Thus $x \in B \wedge x \in \bar{B}\{$

Indirect Proof

Conclusions with Alternatives

$$
\begin{aligned}
& \text { General Structure: } \forall_{x} H(x) \Rightarrow C_{1}(x) \vee C_{2}(x) \\
& \text { Example: } \forall x, y \in \mathbb{R}^{x} \cdot y=0 \Rightarrow x=0 \vee y=0 .
\end{aligned}
$$

- Setup: Let $x, y \in \mathbb{R}$. Assume $x \cdot y=0$.
- Direct Approach: Well... which of the two cases should we try to prove now?
- We are stuck...

Indirect Proof

Conclusions with Alternatives

$$
\begin{aligned}
& \text { General Structure: } \forall_{x} H(x) \Rightarrow C_{1}(x) \vee C_{2}(x) \\
& \text { Example: } \forall_{x, y \in \mathbb{R}} x \cdot y=0 \Rightarrow x=0 \vee y=0 .
\end{aligned}
$$

- Setup: Let $x, y \in \mathbb{R}$. Assume $x \cdot y=0$.
- Indirect Approach: Assume $x \neq 0$. Now try to show $y=0$ and use (3).
- Since $x \neq 0$, the inverse $\frac{1}{x}$ must exist. Thus...

$$
\begin{aligned}
x \cdot y=0 & \Longleftrightarrow \frac{1}{x} \cdot x \cdot y=\frac{1}{x} \cdot 0 \\
& \Longleftrightarrow y=0
\end{aligned}
$$

Other Methods

Evaluating the Truth of a Proposition

> General Structure: For P of the form $\forall x H(x) \Rightarrow C(x)$, is P true or false?

- Can try a direct or indirect proof of P.
- If we succeed P is true.
- If we fail, does that mean P is false? ...
- To disprove P we need to find a counter-example.
- That is a single instance of $\neg P$.

Other Methods

Evaluating the Truth of a Proposition
Example: For all sets X, Y, Z, if $X \cap Z \subseteq Y \cap Z$, then $X \subseteq Y$.

- Setup: Let X, Y, Z be sets.
- Negation of the proposition: There exist sets X, Y, Z such that, $X \cap Z \subseteq Y \cap Z$ and $\exists_{x \in X} x \notin Y$.
- Assume $X \cap Z \subseteq Y \cap Z$, and let $x \in X$.
- We'd need to know $x \in Z$ to use the assumption to make progress.
- Now the proof is stuck, but we got a hint of how to construct a counter-example: $x \notin X \cap Z$.

Other Methods

Evaluating the Truth of a Proposition
Counter-Example: There exist sets X, Y, Z such that, $X \cap Z \subseteq Y \cap Z$ and $\exists_{x \in X} x \notin Y$.

- Setup: Let $X=\{1,4\}, Y=\{2,4\}, Z=\{3,4\}$.
- Then $X \cap Z=\{4\}=Y \cap Z$. ($=$ is a special case of \subseteq.)
- But $1 \in X$, yet $1 \notin Y$

Other Methods

Proof by Mathematical Induction

General Structure: $\forall_{n \in \mathbb{N}} P(n)$ Example: $\forall_{n \in \mathbb{N}} \sum_{k=1}^{n} k=\frac{n \cdot(n+1)}{2}$

- Setup: Let $n \in \mathbb{N}$.
- Base case: Let $n=1$, then $\sum_{k=1}^{1} k=1=\frac{1 \cdot(1+1)}{2}$
- Induction Hypothesis: Assume that $\sum_{k=1}^{n} k=\frac{n \cdot(n+1)}{2}$.
- Try to show that:

$$
\sum_{k=1}^{n+1} k=\frac{(n+1) \cdot(n+1+1)}{2}
$$

Other Methods

Proof by Mathematical Induction

- Try to show that: $\sum_{k=1}^{n+1} k=\frac{(n+1) \cdot(n+2)}{2}$

$$
\begin{aligned}
\sum_{k=1}^{n+1} k & =\sum_{k=1}^{n} k+n+1 \\
& =\frac{n \cdot(n+1)}{2}+n+1 \quad \text { by induction hypothesis } \\
& =\frac{n \cdot(n+1)+2 \cdot(n+1)}{2} \\
& =\frac{(n+1) \cdot(n+2)}{2}
\end{aligned}
$$

Other Methods

Proof by Structural Induction

$$
\begin{aligned}
& \text { Example: For all lists } L_{1}, L_{2} \text { over some set } E \text {, } \\
& \text { length }\left(L_{1}++L_{2}\right)=\text { length }\left(L_{1}\right)+\text { length }\left(L_{2}\right)
\end{aligned}
$$

Definitions:
A list L over an element set E is either empty [] or of the form $h:: T$, where $h \in E$ and T is a list over E.

$$
\begin{array}{ll}
\text { length }([]) & =0 \\
\text { length }(h:: T) & =1+\operatorname{length}(T) \\
{[]++L} & =L \\
(h:: T)++L & =h::(T++L) \tag{7}
\end{array}
$$

Other Methods

Proof by Structural Induction

Example: For all lists L_{1}, L_{2} over some set E, length $\left(L_{1}++L_{2}\right)=\operatorname{length}\left(L_{1}\right)+\operatorname{length}\left(L_{2}\right)$

- Setup: Let L_{1}, L_{2} be lists over E.
- Case []: Assume $L_{1}=[]$. Then

$$
\begin{align*}
\operatorname{length}\left(L_{1}++L_{2}\right) & =\operatorname{length}\left([]++L_{2}\right) \\
& =\operatorname{length}\left(L_{2}\right) \tag{6}\\
& =0+\operatorname{length}\left(L_{2}\right) \\
& =\operatorname{length}([])+\operatorname{length}\left(L_{2}\right) \\
& =\operatorname{length}\left(L_{1}\right)+\operatorname{length}\left(L_{2}\right)
\end{align*}
$$

Other Methods

Proof by Structural Induction

Example: For all lists L_{1}, L_{2} over some set E, length $\left(L_{1}++L_{2}\right)=$ length $\left(L_{1}\right)+$ length $\left(L_{2}\right)$

- Induction Hypothesis (IH): Let T be a list and assume length $\left(T++L_{2}\right)=$ length $(T)+$ length $\left(L_{2}\right)$.
- Case $h:: T$: Assume $L_{1}=h:: T \neq[]$ for some $h \in E$.

$$
\begin{aligned}
& \text { length }\left(L_{1}++L_{2}\right)=\text { length }\left((h:: T)++L_{2}\right) \\
& =\text { length }\left(h::\left(T++L_{2}\right)\right) \\
& =1+\operatorname{length}\left(T++L_{2}\right) \\
& =1+\text { length }(T)+\text { length }\left(L_{2}\right) \quad \text { by }(\mathrm{IH}) \\
& =\text { length }(h:: T)+\text { length }\left(L_{2}\right) \quad \text { by (5) } \square
\end{aligned}
$$

References

Loosely based on
A Guide to Proof-Writing
by Ron Morash, University of Michigan-Dearborn.

