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Introduction
What is a proof?

A proof is sufficient evidence or a sufficient argu-
ment for the truth of a proposition.

I The purpose of a proof is to convince an audience of
the veracity of a proposition.

I Proofs are most common in philosophy, law, and
mathematics (and related disciplines).

I We only consider mathematical proofs here.
I Mathematical propositions are usually expressed in

(mostly first-order) logic and some natural language.
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Introduction
What is a proof?

I Most proofs done by humans (not machines) assume
a particular context from their audience.

I For example: ∀xx = x assumes that you know what =
means in this context and that it’s defined for whatever
x is.

I Context is typically a particular theory (e.g., set
theory), its definitions, axioms, and previously proven
theorems.

I Notation can also be considered context sometimes,
though it’s good to be explicit if possible.
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Introduction
Types of proofs

P: For every x, if H(x), then C(x)
P: ∀x H(x)⇒ C(x)

I This is the most common structure for a mathematical
proposition P.

I H is the hypothesis
I C is the conclusion
I If we prove P as it’s written, we call that direct proof.
I Sometimes we prove a logically equivalent statement

instead. That is called an indirect proof.
I Sometimes propositions must be shown recursively,

which is called induction.

5/26



Direct Proof
Propositions without a Hypothesis

General Structure: ∀x C(x)
Example: For all sets A and B, A ⊆ A ∪ B.

I Setup: Let A,B be sets.
I Rewrite the conclusion (using the definition of ⊆):
∀x∈A x ∈ (A ∪ B)

I Rewrite again (using the definition of ∪):
∀x∈A x ∈ A ∨ x ∈ B.

Let A,B be sets. Let a ∈ A. It follows trivially that
a ∈ A∨a ∈ B, which is equivalent to a ∈ A∪B.
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Direct Proof
Propositions with one or more Hypotheses

General Structure: ∀xH(x)⇒ C(x)
Example: For all sets X ,Y ,Z, if X ⊆ Y,
then X ∩ Z ⊆ Y ∩ Z.

I Setup: Let X ,Y ,Z be sets.
I Use H as an assumption:

Let X ,Y be such that X ⊆ Y .
I Rewrite the hypothesis (using the definition of ⊆):
∀x∈X x ∈ Y

I Rewrite the conclusion (using the definition of ⊆):
∀z∈X∩Z z ∈ Y ∩ Z
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Direct Proof
Propositions with one or more Hypotheses

For all sets X ,Y ,Z, if X ⊆ Y, then X ∩Z ⊆ Y ∩Z.

I Setup: Let X ,Y ,Z be sets, such that X ⊆ Y .
I Definition of ⊆ on the hypothesis:
∀x∈X x ∈ Y

I Definition of ⊆ on the conclusion:
∀x∈X∩Z x ∈ Y ∩ Z

I If x ∈ X ∩ Z the definition of ∩ implies x ∈ X ∧ x ∈ Z .
I Since x ∈ Y (assumption), the definition of ∩ also

implies x ∈ Y ∩ Z .
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Direct Proof
The tactic of “division into cases”

Example1: For all sets A and B,
(A ∩ B) ∪ (A ∩ B̄) ⊆ A.

1B̄ is the set of all items not in B (but in some universal set U
with B ⊆ U)
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Direct Proof
The tactic of “division into cases”

Example: For all sets A and B, (A∩B)∪(A∩B̄) ⊆ A.

I Setup: Let A,B be sets.
I Rewrite conclusion (definition of ⊆):
∀x x ∈ (A ∩ B) ∪ (A ∩ B̄)⇒ x ∈ A

I Let x ∈ (A ∩ B) ∪ (A ∩ B̄), rewrite with definition of ∪:
x ∈ (A ∩ B) ∨ x ∈ (A ∩ B̄)

I Show that it holds for either side of the ∨:
Case 1 : Assume x ∈ (A ∩ B), then, by definition

of ∩, x ∈ A
Case 2 : Assume x ∈ (A ∩ B̄), then, by definition

of ∩, x ∈ A
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Indirect Proof

I Sometimes a direct proof approach is difficult or
impossible.

I It might be easier to prove a logically equivalent
proposition instead.

I We can use one (or more) of the following logical
equivalences (for any logical formulae p,q, r ):

¬q → ¬p ⇐⇒ p → q (1)
¬p → (q ∧ ¬q) ⇐⇒ p (2)

(p ∧ ¬q)→ r ⇐⇒ p → (q ∨ r) (3)
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Indirect Proof
Proof by Contrapositive

Example: For every function f : A→ B with A,B ⊆
R, if f is strictly increasing, then f is injective (one-
to-one).

I Setup: Let f be as above, and strictly increasing
(i.e. ∀x1,x2∈A x1 < x2 ⇒ f (x1) < f (x2)).

I Direct approach: Let x1, x2 ∈ A such that f (x1) = f (x2).
We’d need to to show that x1 = x2.

I Now we are stuck, because we can’t use our “strictly
increasing” assumption on f (x1), f (x2).
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Indirect Proof
Proof by Contrapositive

Example: For every function f : A→ B with A,B ⊆
R, if f is strictly increasing, then f is injective (one-
to-one).

I Setup: Let f be as above, and strictly increasing.
I Indirect approach (assume the contrapositive (1)):

Let x1 6= x2 ∈ A
Now we need to to show that f (x1) 6= f (x2).

I Since (R, <) is a strict total order, it must be that
x1 < x2 ∨ x2 < x1.

I Assume (WLOG) x1 < x2, then, since f is strictly
increasing, f (x1) < f (x2) and thus f (x1) 6= f (x2).

13/26



Indirect Proof
Proof by Contradiction

Example: For all sets A and B, if A ⊆ B, then
A ∩ B̄ = ∅.

I Setup: Let A,B be sets. Assume A ⊆ B.
I Direct approach – show mutual inclusion:

A ∩ B̄ ⊆ ∅ ∧ ∅ ⊆ A ∩ B̄
I ∅ ⊆ A ∩ B̄ is trivially true.
I But how would we show A ∩ B̄ ⊆ ∅? x ∈ ∅ is not an

assumption we can make.
I Stuck again...
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Indirect Proof
Proof by Contradiction

Example: For all sets A and B, if A ⊆ B, then
A ∩ B̄ = ∅.

I Setup: Let A,B be sets. Assume A ⊆ B.
I Indirect approach: Assume A ∩ B̄ 6= ∅.

Try to show that A ∩ B̄ 6= ∅ leads to a contradiction (2)
with A ⊆ B.

I Let x ∈ A ∩ B̄. Then x ∈ A ∧ x ∈ B̄.
I By our hypothesis x ∈ A implies x ∈ B.
I Thus x ∈ B ∧ x ∈ B̄ E
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Indirect Proof
Conclusions with Alternatives

General Structure: ∀xH(x)⇒ C1(x) ∨ C2(x)
Example: ∀x ,y∈R x · y = 0⇒ x = 0 ∨ y = 0.

I Setup: Let x , y ∈ R. Assume x · y = 0.
I Direct Approach: Well...which of the two cases should

we try to prove now?
I We are stuck...
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Indirect Proof
Conclusions with Alternatives

General Structure: ∀xH(x)⇒ C1(x) ∨ C2(x)
Example: ∀x ,y∈R x · y = 0⇒ x = 0 ∨ y = 0.

I Setup: Let x , y ∈ R. Assume x · y = 0.
I Indirect Approach: Assume x 6= 0.

Now try to show y = 0 and use (3).
I Since x 6= 0, the inverse 1

x must exist. Thus...

x · y = 0 ⇐⇒ 1
x
· x · y =

1
x
· 0

⇐⇒ y = 0
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Other Methods
Evaluating the Truth of a Proposition

General Structure: For P of the form
∀xH(x)⇒ C(x), is P true or false?

I Can try a direct or indirect proof of P.
I If we succeed P is true.
I If we fail, does that mean P is false? ...

I To disprove P we need to find a counter-example.
I That is a single instance of ¬P.
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Other Methods
Evaluating the Truth of a Proposition

Example: For all sets X ,Y ,Z,
if X ∩ Z ⊆ Y ∩ Z, then X ⊆ Y.

I Setup: Let X ,Y ,Z be sets.
I Negation of the proposition: There exist sets X ,Y ,Z

such that, X ∩ Z ⊆ Y ∩ Z and ∃x∈X x /∈ Y .
I Assume X ∩ Z ⊆ Y ∩ Z , and let x ∈ X .
I We’d need to know x ∈ Z to use the assumption to

make progress.
I Now the proof is stuck, but we got a hint of how to

construct a counter-example: x /∈ X ∩ Z .
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Other Methods
Evaluating the Truth of a Proposition

Counter-Example: There exist sets X ,Y ,Z such
that, X ∩ Z ⊆ Y ∩ Z and ∃x∈X x /∈ Y.

I Setup: Let X = {1,4},Y = {2,4},Z = {3,4}.
I Then X ∩ Z = {4} = Y ∩ Z . (= is a special case of ⊆.)
I But 1 ∈ X , yet 1 /∈ Y

20/26



Other Methods
Proof by Mathematical Induction

General Structure: ∀n∈NP(n)

Example: ∀n∈N
∑n

k=1 k = n·(n+1)
2

I Setup: Let n ∈ N.
I Base case: Let n = 1, then

∑1
k=1 k = 1 = 1·(1+1)

2
I Induction Hypothesis: Assume that

∑n
k=1 k = n·(n+1)

2 .
I Try to show that:

n+1∑
k=1

k =
(n + 1) · (n + 1 + 1)

2
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Other Methods
Proof by Mathematical Induction

I Try to show that:
∑n+1

k=1 k = (n+1)·(n+2)
2

n+1∑
k=1

k =
n∑

k=1

k + n + 1

=
n · (n + 1)

2
+ n + 1 by induction hypothesis

=
n · (n + 1) + 2 · (n + 1)

2

=
(n + 1) · (n + 2)

2
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Other Methods
Proof by Structural Induction

Example: For all lists L1,L2 over some set E,
length(L1 ++ L2) = length(L1) + length(L2)

Definitions:
A list L over an element set E is either empty [] or of the
form h :: T , where h ∈ E and T is a list over E .

length([]) = 0 (4)
length(h :: T ) = 1 + length(T ) (5)
[] ++ L = L (6)
(h :: T ) ++ L = h :: (T ++ L) (7)
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Other Methods
Proof by Structural Induction

Example: For all lists L1,L2 over some set E,
length(L1 ++ L2) = length(L1) + length(L2)

I Setup: Let L1,L2 be lists over E .
I Case []: Assume L1 = []. Then

length(L1 ++ L2) = length([] ++ L2)

= length(L2) by (6)
= 0 + length(L2)

= length([]) + length(L2) by (4)
= length(L1) + length(L2)
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Other Methods
Proof by Structural Induction

Example: For all lists L1,L2 over some set E,
length(L1 ++ L2) = length(L1) + length(L2)

I Induction Hypothesis (IH): Let T be a list and assume
length(T ++ L2) = length(T ) + length(L2).

I Case h :: T : Assume L1 = h :: T 6= [] for some h ∈ E .

length(L1 ++ L2) = length((h :: T ) ++ L2)

= length(h :: (T ++ L2)) by (7)
= 1 + length(T ++ L2) by (5)
= 1 + length(T ) + length(L2) by (IH)
= length(h :: T ) + length(L2) by (5)
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