

Review Proof Writing and Structure

Lars Kroll (lkroll@kth.se)

Overview

Introduction

What is a proof?

Direct Proof

Propositions without a Hypothesis
Propositions with one or more Hypotheses

The tactic of "division into cases"

Indirect Proof

Proof by Contrapositive

Proof by Contradiction

Conclusions with Alternatives

Other Methods

Evaluating the Truth of a Proposition

Proof by Mathematical Induction

Proof by Structural Induction

Introduction

What is a proof?

A proof is sufficient evidence or a sufficient argument for the truth of a proposition.

- ► The purpose of a proof is to convince an audience of the veracity of a proposition.
- Proofs are most common in philosophy, law, and mathematics (and related disciplines).
- ▶ We only consider mathematical proofs here.
- Mathematical propositions are usually expressed in (mostly first-order) logic and some natural language.

Introduction

What is a proof?

- Most proofs done by humans (not machines) assume a particular context from their audience.
- For example: $\forall_x x = x$ assumes that you know what = means in this context and that it's defined for whatever x is.
- Context is typically a particular theory (e.g., set theory), its definitions, axioms, and previously proven theorems.
- Notation can also be considered context sometimes, though it's good to be explicit if possible.

Introduction

Types of proofs

P: For every
$$x$$
, if $H(x)$, then $C(x)$
P: $\forall_x H(x) \Rightarrow C(x)$

- This is the most common structure for a mathematical proposition P.
- ► *H* is the *hypothesis*
- C is the conclusion
- ▶ If we prove *P* as it's written, we call that *direct proof*.
- Sometimes we prove a logically equivalent statement instead. That is called an *indirect proof*.
- Sometimes propositions must be shown recursively, which is called *induction*.

Propositions without a Hypothesis

General Structure: $\forall_X \ C(x)$ Example: For all sets A and B, $A \subseteq A \cup B$.

- Setup: Let A, B be sets.
- ▶ Rewrite the conclusion (using the definition of \subseteq): $\forall_{x \in A} \ x \in (A \cup B)$
- ▶ Rewrite again (using the definition of \cup): $\forall_{x \in A} \ x \in A \lor x \in B$.

Let A, B be sets. Let $a \in A$. It follows trivially that $a \in A \lor a \in B$, which is equivalent to $a \in A \cup B$. \square

Propositions with one or more Hypotheses

General Structure: $\forall_X H(x) \Rightarrow C(x)$ Example: For all sets X, Y, Z, if $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$.

- Setup: Let X, Y, Z be sets.
- Use H as an assumption: Let X, Y be such that $X \subseteq Y$.
- ▶ Rewrite the hypothesis (using the definition of \subseteq): $\forall_{x \in X} \ x \in Y$
- ▶ Rewrite the conclusion (using the definition of \subseteq): $\forall_{z \in X \cap Z} \ z \in Y \cap Z$

Propositions with one or more Hypotheses

For all sets X, Y, Z, if $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$.

- ▶ Setup: Let X, Y, Z be sets, such that $X \subseteq Y$.
- Definition of ⊆ on the hypothesis:
 - $\forall_{x \in X} \ x \in Y$
- ▶ Definition of \subseteq on the conclusion: $\forall_{x \in X \cap Z} x \in Y \cap Z$
- ▶ If $x \in X \cap Z$ the definition of \cap implies $x \in X \land x \in Z$.
- Since $x \in Y$ (assumption), the definition of \cap also implies $x \in Y \cap Z$.

The tactic of "division into cases"

Example¹: For all sets A and B,
$$(A \cap B) \cup (A \cap \overline{B}) \subseteq A$$
.

The tactic of "division into cases"

Example: For all sets A and B, $(A \cap B) \cup (A \cap \overline{B}) \subseteq A$.

- Setup: Let A, B be sets.
- ► Rewrite conclusion (definition of ⊆): $\forall_x \ x \in (A \cap B) \cup (A \cap \bar{B}) \Rightarrow x \in A$
- ▶ Let $x \in (A \cap B) \cup (A \cap \overline{B})$, rewrite with definition of \cup : $x \in (A \cap B) \lor x \in (A \cap \overline{B})$
- ► Show that it holds for either side of the ∨:
 - **Case 1**: Assume $x \in (A \cap B)$, then, by definition of \cap , $x \in A$
 - **Case 2** : Assume $x \in (A \cap \bar{B})$, then, by definition of \cap , $x \in A$

- Sometimes a direct proof approach is difficult or impossible.
- It might be easier to prove a logically equivalent proposition instead.
- We can use one (or more) of the following logical equivalences (for any logical formulae p, q, r):

$$\neg q \to \neg p \iff p \to q \tag{1}$$

$$\neg p \rightarrow (q \land \neg q) \iff p$$
 (2)

$$(p \land \neg q) \to r \iff p \to (q \lor r) \tag{3}$$

Proof by Contrapositive

Example: For every function $f: A \to B$ with $A, B \subseteq \mathbb{R}$, if f is strictly increasing, then f is injective (one-to-one).

- Setup: Let f be as above, and strictly increasing (i.e. $\forall_{x_1, x_2 \in A} x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$).
- ▶ Direct approach: Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. We'd need to to show that $x_1 = x_2$.
- Now we are stuck, because we can't use our "strictly increasing" assumption on $f(x_1)$, $f(x_2)$.

Proof by Contrapositive

Example: For every function $f : A \to B$ with $A, B \subseteq \mathbb{R}$, if f is strictly increasing, then f is injective (one-to-one).

- Setup: Let f be as above, and strictly increasing.
- Indirect approach (assume the contrapositive (1)): Let $x_1 \neq x_2 \in A$ Now we need to to show that $f(x_1) \neq f(x_2)$.
- Since $(\mathbb{R}, <)$ is a *strict total order*, it must be that $x_1 < x_2 \lor x_2 < x_1$.
- Assume (WLOG) $x_1 < x_2$, then, since f is strictly increasing, $f(x_1) < f(x_2)$ and thus $f(x_1) \neq f(x_2)$.

Proof by Contradiction

Example: For all sets A and B, if $A \subseteq B$, then $A \cap \overline{B} = \emptyset$.

- ▶ Setup: Let A, B be sets. Assume $A \subseteq B$.
- ▶ Direct approach show mutual inclusion: $A \cap \bar{B} \subseteq \emptyset \land \emptyset \subseteq A \cap \bar{B}$
- ▶ $\emptyset \subseteq A \cap \overline{B}$ is trivially true.
- ▶ But how would we show $A \cap \overline{B} \subseteq \emptyset$? $x \in \emptyset$ is not an assumption we can make.
- Stuck again...

Proof by Contradiction

Example: For all sets A and B, if $A \subseteq B$, then $A \cap \overline{B} = \emptyset$.

- ▶ Setup: Let A, B be sets. Assume $A \subseteq B$.
- Indirect approach: Assume $A \cap \bar{B} \neq \emptyset$. Try to show that $A \cap \bar{B} \neq \emptyset$ leads to a contradiction (2) with $A \subseteq B$.
- ▶ Let $x \in A \cap \bar{B}$. Then $x \in A \land x \in \bar{B}$.
- ▶ By our hypothesis $x \in A$ implies $x \in B$.
- ▶ Thus $x \in B \land x \in \bar{B}$ f

Conclusions with Alternatives

General Structure:
$$\forall_x H(x) \Rightarrow C_1(x) \lor C_2(x)$$

Example: $\forall_{x,y \in \mathbb{R}} x \cdot y = 0 \Rightarrow x = 0 \lor y = 0$.

- ▶ Setup: Let $x, y \in \mathbb{R}$. Assume $x \cdot y = 0$.
- Direct Approach: Well...which of the two cases should we try to prove now?
- We are stuck...

Conclusions with Alternatives

General Structure:
$$\forall_x H(x) \Rightarrow C_1(x) \lor C_2(x)$$

Example: $\forall_{x,y \in \mathbb{R}} x \cdot y = 0 \Rightarrow x = 0 \lor y = 0$.

- ▶ Setup: Let $x, y \in \mathbb{R}$. Assume $x \cdot y = 0$.
- ▶ Indirect Approach: Assume $x \neq 0$. Now try to show y = 0 and use (3).
- Since $x \neq 0$, the inverse $\frac{1}{x}$ must exist. Thus...

$$x \cdot y = 0 \iff \frac{1}{x} \cdot x \cdot y = \frac{1}{x} \cdot 0$$

 $\iff y = 0$

Evaluating the Truth of a Proposition

General Structure: For P of the form $\forall_x H(x) \Rightarrow C(x)$, is P true or false?

- Can try a direct or indirect proof of P.
 - ▶ If we succeed *P* is true.
 - If we fail, does that mean P is false? ...
- ▶ To disprove *P* we need to find a counter-example.
- ▶ That is a single instance of $\neg P$.

Evaluating the Truth of a Proposition

Example: For all sets X, Y, Z, if $X \cap Z \subseteq Y \cap Z$, then $X \subseteq Y$.

- Setup: Let X, Y, Z be sets.
- Negation of the proposition: There exist sets X, Y, Z such that, $X \cap Z \subseteq Y \cap Z$ and $\exists_{x \in X} x \notin Y$.
- Assume $X \cap Z \subseteq Y \cap Z$, and let $x \in X$.
- We'd need to know $x \in Z$ to use the assumption to make progress.
- Now the proof is stuck, but we got a hint of how to construct a counter-example: $x \notin X \cap Z$.

Evaluating the Truth of a Proposition

Counter-Example: There exist sets X, Y, Z such that, $X \cap Z \subseteq Y \cap Z$ and $\exists_{x \in X} x \notin Y$.

- ► Setup: Let $X = \{1,4\}, Y = \{2,4\}, Z = \{3,4\}.$
- ▶ Then $X \cap Z = \{4\} = Y \cap Z$. (= is a special case of \subseteq .)
- But 1 ∈ X, yet 1 ∉ Y

Proof by Mathematical Induction

General Structure:
$$\forall_{n \in \mathbb{N}} P(n)$$

Example: $\forall_{n \in \mathbb{N}} \sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$

- ▶ Setup: Let $n \in \mathbb{N}$.
- ▶ Base case: Let n = 1, then $\sum_{k=1}^{1} k = 1 = \frac{1 \cdot (1+1)}{2}$
- ▶ Induction Hypothesis: Assume that $\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$.
- Try to show that:

$$\sum_{k=1}^{n+1} k = \frac{(n+1) \cdot (n+1+1)}{2}$$

Proof by Mathematical Induction

► Try to show that: $\sum_{k=1}^{n+1} k = \frac{(n+1)\cdot(n+2)}{2}$

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1$$

$$= \frac{n \cdot (n+1)}{2} + n + 1$$
 by induction hypothesis
$$= \frac{n \cdot (n+1) + 2 \cdot (n+1)}{2}$$

$$= \frac{(n+1) \cdot (n+2)}{2}$$

Proof by Structural Induction

Example: For all lists
$$L_1$$
, L_2 over some set E , length($L_1 + L_2$) = length(L_1) + length(L_2)

Definitions:

A *list L* over an element set E is either empty [] or of the form h :: T, where $h \in E$ and T is a list over E.

$$length([]) = 0 (4)$$

$$length(h :: T) = 1 + length(T)$$
 (5)

$$[] ++ L = L$$
 (6)

$$(h::T) ++ L = h::(T++L)$$
 (7)

Proof by Structural Induction

Example: For all lists
$$L_1$$
, L_2 over some set E , length($L_1 ++ L_2$) = length(L_1) + length(L_2)

- Setup: Let L₁, L₂ be lists over E.
- ▶ Case []: Assume $L_1 = []$. Then

Proof by Structural Induction

Example: For all lists
$$L_1$$
, L_2 over some set E , length($L_1 ++ L_2$) = length(L_1) + length(L_2)

- Induction Hypothesis (IH): Let T be a list and assume $length(T ++ L_2) = length(T) + length(L_2)$.
- ▶ Case h :: T: Assume $L_1 = h :: T \neq []$ for some $h \in E$.

$$length(L_1 ++ L_2) = length((h :: T) ++ L_2)$$

$$= length(h :: (T ++ L_2)) \qquad by (7)$$

$$= 1 + length(T ++ L_2) \qquad by (5)$$

$$= 1 + length(T) + length(L_2) \qquad by (IH)$$

$$= length(h :: T) + length(L_2) \qquad by (5) \qquad \Box$$

References

Loosely based on

A Guide to Proof-Writing
by Ron Morash, University of Michigan—Dearborn.