Svar på KS2
Uppgift 1:
RT=5+10=15kΩ
τ=RC=15k⋅15μ=15⋅103⋅15⋅10−6=225⋅10−3=0,225s
vC(t)=VFinal+(VInitial−VFinal)e−tτ=VFinal+(0−VFinal)e−tτ=VFinal−VFinale−tτ=VFinal(1−e−tτ)=20(1−e−t0,225)V
i(t)=E−vC(t)RT=20−20(1−e−t0,225)15k=20−20+20e−t0,22515k=2015e−t0,225mA
vR(t)=i(t)⋅R1=2015ke−t0,225⋅5k=203e−t0,225V
vC(0)=0v (based on theory)
vC(0,1)=20(1−e−0,10,225)=20(1−e−0,44)=20(1−0,641)=7,17V
vC(10)=20v (based on theory where 10s>5τ)
vC(τ)=20(1−e−ττ)=20(1−e−1)=20(1−0,367)=20⋅0,632=12,642V
Uppgift 2:
First we need to find reactance of all elements and transform the source form into phasor:
Since e=21,21sin(ωt+60∘), then
E=21,21√2∠60∘=15∠60∘ . To transform it to rectangular form:
E=15(cos60∘+sin60∘⋅i)=7.5+12.99i
XC=1ωC=12πfC=12π⋅50⋅637μ=5Ω
XL=ωL=2πfL=2π⋅50⋅32m=10Ω
Now we will nodal analysis with node V1 on node where the capacitor, the inductor and the resistor are connected.
−V1−EZC−V1ZL−V1R=0
−V1ZC+EZC−V1ZL−V1R=−V1−5i+7.5+12.99i−5i−V110i−V16=V15i−7.5+12.99i5i−V110i−V16=0
V15i⋅30i−7.5+12.99i5i⋅30i−V110i⋅30i−V16⋅30i=0 (Multiply by LCM=30i)
−5iV1+3V1−6(7.5+12.99i)=0 (simplify)
−5iV1+3V1−45−77.94i=0
−5iV1+3V1=77.94i+45
(−5i+3)V1−5i+3=77.94i−5i+3+45−5i+3
V1=−7.491+13.495i
Now voltage on the resistor R is the same as V1, so:
VR=−7.491+13.495i=15.43∠119.03∘ V
v(t)=15.43√2sin(ωt+119∘)=21.82sin(ωt+119∘)
We see here an interesting picture vR(t): the amplitude of the voltage across an inductor is greater than the amplitude of the generator. This can be true in RLC circuits. As we know maximum current=(voltage from the generator)/(total impedance). So maximum voltage on the inductor is VL=IXL=eZXL=eXLZ
Therefore if XL is greater than Z, then the voltage across the inductor will be greater than e.
Uppgift 3:
For element X1:
Efficiency is measured as useful power divided by total power. The useful power is 15kW and we need to know the total power. So:
P1=15k0,9=16,667kW
Q1=0VAR
S1=P1=16,667kVA
For element X2:
P2=10kW (given)
Since power factor is real power divided by apparent power, S2=P2cosθ=10k0,7=14,286kVA
θ=cos−1(0,7)=45,573∘
Q2=S2sinθ=14,286k⋅0,714=10.2kVAR (inductive)
For element X3:
S3=20kVA (given)
θ=cos−1(0,8)=36,870∘
Q3=S3sin(36,870∘)=20k⋅0,6=12kVAR (inductive)
Since power factor is real power divided by apparent power, P3=S3⋅cosθ=20⋅0,8=16kW
Total real power: PT=P1+P2+P3=16,667+10+16=42,667kW
Total reactive power: QT=Q1+Q2+Q3=0+10,2+12=22,2kVAR (inductive)
Total apparent factor: ST=√P2T+Q2T=√42,6672+22,22=48,097kVA
(total power factor: cosθ=PTST=42,66748,097=0,887 )
To raise power factor we need to add capacitor because the system is inductive
To raise power factor to 0,95, we need to find the total reactive power that will be in such system.
θ=cos−1(0,95)=18,195∘
S′improved=Pcosθ=42,6670,95=44,913kVA
Q′imporved=S′imporvedsin(18,195∘)=44,913⋅0,312=14,013kVAR
We need to remove ΔQ′imporved=22,2−14,013=8,187kVAR
Alternative formula for reactive power is Q=E2XC , so
XC=E2Q=E2ΔQ=22028,187k=5,912Ω
Since XC=12πfC , then
C′=12πfXC=12π⋅50⋅5,912=5,384⋅10−4=538μF
To raise power factor to 1, it means we need to remove entire Qtotal
XC=220222,2k=2,180Ω
C″=12πfXC=12π⋅50⋅2,180=1,460⋅10−3=1,5mF