Svar på KS2

Uppgift 1:

LaTeX: R_T=5+10=15k\OmegaRT=5+10=15kΩ 

LaTeX: \tau=RC=15k\cdot15\mu=15\cdot10^3\cdot15\cdot10^{-6}=225\cdot10^{-3}=0,225sτ=RC=15k15μ=1510315106=225103=0,225s 

LaTeX: v_C\left(t\right)=V_{Final}+\left(V_{Initial}-V_{Final}\right)e^{-\frac{t}{\tau}}=V_{Final}+\left(0-V_{Final}\right)e^{-\frac{t}{\tau}}=V_{Final}-V_{Final}e^{-\frac{t}{\tau}}=V_{Final}\left(1-e^{-\frac{t}{\tau}}\right)=20\left(1-e^{-\frac{t}{0,225}}\right)VvC(t)=VFinal+(VInitialVFinal)etτ=VFinal+(0VFinal)etτ=VFinalVFinaletτ=VFinal(1etτ)=20(1et0,225)V   

LaTeX: i\left(t\right)=\frac{E-v_C\left(t\right)}{R_T}=\frac{20-20\left(1-e^{-\frac{t}{0,225}}\right)}{15k}=\frac{20-20+20e^{-\frac{t}{0,225}}}{15k}=\frac{20}{15}e^{-\frac{t}{0,225}}mAi(t)=EvC(t)RT=2020(1et0,225)15k=2020+20et0,22515k=2015et0,225mA 

LaTeX: v_R\left(t\right)=i\left(t\right)\cdot R_1=\frac{20}{15k}e^{-\frac{t}{0,225}}\cdot5k=\frac{20}{3}e^{-\frac{t}{0,225}}VvR(t)=i(t)R1=2015ket0,2255k=203et0,225V  

LaTeX: v_C\left(0\right)=0vvC(0)=0v   (based on theory)

LaTeX: v_C\left(0,1\right)=20\left(1-e^{-\frac{0,1}{0,225}}\right)=20\left(1-e^{-0,44}\right)=20\left(1-0,641\right)=7,17VvC(0,1)=20(1e0,10,225)=20(1e0,44)=20(10,641)=7,17V  

LaTeX: v_C\left(10\right)=20vvC(10)=20v (based on theory where 10s>5τ)

LaTeX: v_C\left(\tau\right)=20\left(1-e^{-\frac{\tau}{\tau}}\right)=20\left(1-e^{-1}\right)=20\left(1-0,367\right)=20\cdot0,632=12,642VvC(τ)=20(1eττ)=20(1e1)=20(10,367)=200,632=12,642V  

Uppgift 2:

First we need to find reactance of all elements and transform the source form into phasor:

Since LaTeX: e=21,21\sin\left(\omega t+60^\circ\right)e=21,21sin(ωt+60), then LaTeX: E=\frac{21,21}{\sqrt{2}}\angle60^\circ=15\angle60^\circE=21,21260=1560 . To transform it to rectangular form: LaTeX: E=15\left(\cos60^\circ+\sin60^\circ\cdot i\right)=7.5+12.99iE=15(cos60+sin60i)=7.5+12.99i  

LaTeX: X_C=\frac{1}{\omega C}=\frac{1}{2\pi fC}=\frac{1}{2\pi\cdot50\cdot637\mu}=5\OmegaXC=1ωC=12πfC=12π50637μ=5Ω  

LaTeX: X_L=\omega L=2\pi fL=2\pi\cdot50\cdot32m=10\OmegaXL=ωL=2πfL=2π5032m=10Ω 

Now we will nodal analysis with node V1 on node where the capacitor, the inductor and the resistor are connected.

LaTeX: -\frac{V_1-E}{Z_C}-\frac{V_1}{Z_L}-\frac{V_1}{R}=0V1EZCV1ZLV1R=0 

LaTeX: -\frac{V_1}{Z_C}+\frac{E}{Z_C}-\frac{V_1}{Z_L}-\frac{V_1}{R}=-\frac{V_1}{-5i}+\frac{7.5+12.99i}{-5i}-\frac{V_1}{10i}-\frac{V_1}{6}=\frac{V_1}{5i}-\frac{7.5+12.99i}{5i}-\frac{V_1}{10i}-\frac{V_1}{6}=0V1ZC+EZCV1ZLV1R=V15i+7.5+12.99i5iV110iV16=V15i7.5+12.99i5iV110iV16=0     

LaTeX: \frac{V_1}{5i}\cdot \:30i-\frac{7.5+12.99i}{5i}\cdot \:30i-\frac{V_1}{10i}\cdot \:30i-\frac{V_1}{6}\cdot \:30i=0V15i30i7.5+12.99i5i30iV110i30iV1630i=0  (Multiply by LCM=30i)

LaTeX: -5iV_1+3V_1-6\left(7.5+12.99i\right)=05iV1+3V16(7.5+12.99i)=0  (simplify)

LaTeX: -5iV_1+3V_1-45-77.94i=05iV1+3V14577.94i=0  

LaTeX: -5iV_1+3V_1=77.94i+455iV1+3V1=77.94i+45   

LaTeX: \frac{\left(-5i+3\right)V_1}{-5i+3}=\frac{77.94i}{-5i+3}+\frac{45}{-5i+3}(5i+3)V15i+3=77.94i5i+3+455i+3  

LaTeX: V_1=-7.491 +13.495iV1=7.491+13.495i  

Now voltage on the resistor R is the same as V1, so:

LaTeX: V_R=-7.491 +13.495i=15.43\angle119.03^\circVR=7.491+13.495i=15.43119.03   V

LaTeX: v(t)=15.43\sqrt{2}\sin\left(\omega t+119^\circ\right)=21.82\sin\left(\omega t+119^\circ\right)v(t)=15.432sin(ωt+119)=21.82sin(ωt+119)   

We see here an interesting picture vR(t): the amplitude of the voltage across an inductor is greater than the amplitude of the generator. This can be true in RLC circuits. As we know maximum current=(voltage from the generator)/(total impedance). So maximum voltage on the inductor is LaTeX: V_L=\frac{I}{X_L}=\frac{\frac{e}{Z}}{X_L}=e\frac{X_L}{Z}VL=IXL=eZXL=eXLZ 

Therefore if XL is greater than Z, then the voltage across the inductor will be greater than e.

Uppgift 3:

For element X1:

Efficiency is measured as useful power divided by total power. The useful power is 15kW and we need to know the total power. So:

LaTeX: P_1=\frac{15k}{0,9}=16,667kWP1=15k0,9=16,667kW 

LaTeX: Q_1=0VARQ1=0VAR 

LaTeX: S_1=P_1=16,667kVAS1=P1=16,667kVA 

For element X2:

LaTeX: P_2=10kWP2=10kW (given)

Since power factor is real power divided by apparent power, LaTeX: S_2=\frac{P_2}{\cos\theta}=\frac{10k}{0,7}=14,286kVAS2=P2cosθ=10k0,7=14,286kVA 

LaTeX: \theta=\cos^{-1}\left(0,7\right)=45,573^\circθ=cos1(0,7)=45,573 

LaTeX: Q_2=S_2\sin\theta=14,286k\cdot0,714=10.2kVARQ2=S2sinθ=14,286k0,714=10.2kVAR (inductive)

For element X3:

LaTeX: S_3=20kVAS3=20kVA (given)

LaTeX: \theta=\cos^{-1}\left(0,8\right)=36,870^\circθ=cos1(0,8)=36,870 

LaTeX: Q_3=S_3\sin\left(36,870^\circ\right)=20k\cdot0,6=12kVARQ3=S3sin(36,870)=20k0,6=12kVAR (inductive)

Since power factor is real power divided by apparent power, LaTeX: P_3=S_3\cdot\cos\theta=20\cdot0,8=16kWP3=S3cosθ=200,8=16kW

 

Total real power: LaTeX: P_T=P_1+P_2+P_3=16,667+10+16=42,667kWPT=P1+P2+P3=16,667+10+16=42,667kW  

Total reactive power: LaTeX: Q_T=Q_1+Q_2+Q_3=0+10,2+12=22,2kVARQT=Q1+Q2+Q3=0+10,2+12=22,2kVAR  (inductive)

Total apparent factor: LaTeX: S_T=\sqrt{P^2_T+Q^2_T}=\sqrt{42,667^2+22,2^2}=48,097kVAST=P2T+Q2T=42,6672+22,22=48,097kVA  

(total power factor: LaTeX: \cos\theta=\frac{P_T}{S_T}=\frac{42,667}{48,097}=0,887cosθ=PTST=42,66748,097=0,887   )

 

To raise power factor we need to add capacitor because the system is inductive

To raise power factor to 0,95, we need to find the total reactive power that will be in such system.

LaTeX: \theta=\cos^{-1}\left(0,95\right)=18,195^\circθ=cos1(0,95)=18,195

LaTeX: S'_{improved}=\frac{P}{\cos\theta}=\frac{42,667}{0,95}=44,913kVASimproved=Pcosθ=42,6670,95=44,913kVA  

LaTeX: Q'_{imporved}=S'_{imporved}\sin\left(18,195^\circ\right)=44,913\cdot0,312=14,013kVARQimporved=Simporvedsin(18,195)=44,9130,312=14,013kVAR  

We need to remove LaTeX: \Delta Q'_{imporved}=22,2-14,013=8,187kVARΔQimporved=22,214,013=8,187kVAR     

Alternative formula for reactive power is LaTeX: Q=\frac{E^2}{X_C}Q=E2XC , so LaTeX: X_C=\frac{E^2}{Q}=\frac{E^2}{\Delta Q}=\frac{220^2}{8,187k}=5,912\OmegaXC=E2Q=E2ΔQ=22028,187k=5,912Ω  

Since LaTeX: X_C=\frac{1}{2\pi fC}XC=12πfC , then LaTeX: C'=\frac{1}{2\pi fX_C}=\frac{1}{2\pi\cdot50\cdot5,912}=5,384\cdot10^{-4}=538\mu FC=12πfXC=12π505,912=5,384104=538μF    

 

To raise power factor to 1, it means we need to remove entire Qtotal

LaTeX: X_C=\frac{220^2}{22,2k}=2,180\OmegaXC=220222,2k=2,180Ω  

LaTeX: C''=\frac{1}{2\pi fX_C}=\frac{1}{2\pi\cdot50\cdot2,180}=1,460\cdot10^{-3}=1,5mFC=12πfXC=12π502,180=1,460103=1,5mF