HE1027 Electrical Principals

Power in AC Current

Power in series and parallel

$P_{\text {total }}=I_{\text {total }}{ }^{*} V_{\text {total }}$
$I_{\text {total }}=l_{1}=I_{2}=I_{3}$
$V_{\text {total }}=V_{1}+V_{2}+V_{3}$
$P_{\text {total }}=I_{\text {total }}{ }^{*}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}\right)$
$P_{\text {total }}=I_{\text {total }}{ }^{*} V_{1}+I_{\text {total }} * V_{2}+I_{\text {total }} * V_{3}$
$P_{\text {total }}=I_{1}{ }^{*} V_{1}+I_{2}{ }^{*} V_{2}+I_{3}{ }^{*} V_{3}$
$P_{\text {total }}=P_{1}+P_{2}+P_{3}$

$P_{\text {total }}=I_{\text {total }}{ }^{*} V_{\text {total }}$
$\mathrm{V}_{\text {total }}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$
$I_{\text {total }}=l_{1}+I_{2}+l_{3}$
$P_{\text {total }}=\left(I_{1}+I_{2}+I_{3}\right)^{*} V_{\text {total }}$
$\mathrm{P}_{\text {total }}=\mathrm{V}_{\text {total }}{ }^{*} \mathrm{~V}_{1}+\mathrm{V}_{\text {total }}{ }^{*} \mathrm{I}_{2}+\mathrm{V}_{\text {total }}{ }^{*} I_{3}$
$P_{\text {total }}=V_{1}{ }^{*} I_{1}+V_{2}{ }^{*} I_{2}+V_{3}{ }^{*} I_{3}$
$P_{\text {total }}=P_{1}+P_{2}+P_{3}$

The actual amount of power being used, or dissipated, in a circuit is called real power

It is measured in watts (symbolized by the capital letter P, as always)

$$
P=V I \cos \theta
$$

$\theta=0^{\circ}$ for purely resistive
$\theta=90^{\circ}$ for purely inductive
$\theta=-90^{\circ}$ for purely capacitive

Reactive Power (reaktiv effekt)

- Inductors and capacitors do not decrease power
- They cause drops of voltage and draws of current that creates impression that they actually use power
- This "phantom power" is called reactive power
- It is measured in a unit called Volt-Amps-Reactive (VAR)
- The mathematical symbol for reactive power is the capital letter Q

$$
Q=V / \sin \theta
$$

$$
Q=I^{2} X
$$

$$
Q=V^{2} / X
$$

Apparent Power (skenbar effekt)

- The combination of real power and reactive power is called apparent power
- It is the product of a circuit's voltage and current, without reference to phase angle
- Apparent power is measured in the unit of Volt-Amps (VA) and is symbolized by the capital letter S

$$
S=V I
$$

$$
S=P / \cos \theta
$$

S=P+Qi for inductive load
$S=P$-Qi for conductive load

$$
S=\sqrt{P^{2}+Q^{2}}
$$

Power Diagram

From previous slide:
$S=P+$ Qi for inductive load
$S=P$-Qi for conductive load

$$
S=\sqrt{P^{2}+Q^{2}}
$$

Real Power (P)

Power diagram for inductive load
Power diagram for capacitive load

Example
 Find P, Q and S

$$
\mathrm{I}=2 \mathrm{~A}
$$

Real power $\mathrm{P}=\mathrm{VI} \cos \theta=120 * 2^{*} 1=240 \mathrm{~W}$
since it is a resistive network $\cos \theta=1$ and $\sin \theta=0$
Reactive power $\mathrm{Q}=\mathrm{VIsin} \theta=120 * 2 * 0=0 \mathrm{VAR}$
Apparent power $\mathrm{S}=240+0 \mathrm{i}=240 \mathrm{VA}$

Example

Find P, Q and S

Real power $\mathrm{P}=\mathrm{VI} \cos \theta=120 * 1.989 * 0=0 \mathrm{~W}$
Reactive power $\mathrm{Q}=\mathrm{VI} \sin \theta=120^{*} 1.989^{*} 1=238.73 \mathrm{VAR}$

$$
\begin{aligned}
& Q=I^{2} X=1.989^{2} * 60.319=238.6 V A R \\
& Q=V^{2} / X=120^{2} / 60.319=238.73 V A R
\end{aligned}
$$

Apparent power $\mathrm{S}=\mathrm{VI}=120 * 1.989=238.73 \mathrm{VA}$

Example

Find P, Q and S

Power Factor

Since $\mathrm{P}=\mathrm{VI} \cos \theta$ and $\mathrm{S}=\mathrm{VI}, \mathrm{P}=\mathrm{S} \cos \theta$

$\cos \theta=\frac{P}{S}$

A ratio of the real power to apparent power $(\cos \theta)$ is known as power factor

Example

Find power factor

$\mathbf{P}_{\text {Total }}, \mathbf{Q}_{\text {Total }}$ and $\mathbf{S}_{\text {Total }}$

1. Find the real power and reactive power for each branch of the circuit.
2. The total real power of the system $\mathrm{P}_{\text {Total }}$ is then a sum of average power delivered to each branch
3. The total reactive power $Q_{\text {Total }}$ is the difference between the reactive power of the inductive loads and that of the capacitive loads
4. The total apparent power $S_{T}=\sqrt{P_{\text {Total }}^{2}+Q_{\text {Total }}^{2}}$
5. The total power factor is $\cos \theta=\frac{P_{\text {Total }}}{S_{\text {Total }}}$

Example

Find $S_{\text {Total }}$ and power factor

1. Find P and Q for each element
$P_{1}=200 \mathrm{~W}$ and $Q_{1}=0 \mathrm{VAR}$
$P_{2}=100 \mathrm{~W}$ and $Q_{2}=-50 \mathrm{VAR}$ (cap)
$\mathrm{P}_{3}=300 \mathrm{~W}$
$\cos \theta=\mathrm{P} / \mathrm{S} \rightarrow \mathrm{S}_{3}=\mathrm{P}_{3} / \cos \theta_{3}=300 / 0.6=500 \mathrm{VA}$
$\mathrm{Q}=\mathrm{VI} \sin \theta=\mathrm{S} \sin \theta$
$\theta_{3}=\arccos (0.6)=53.13^{\circ}$
$\mathrm{Q}_{3}=500^{*} \sin \left(53.13^{\circ}\right)=500^{*} 0.8=+400 \mathrm{VAR}$ (induc)
2. Find real power $\mathrm{P}_{\text {Total }}$
$\mathrm{P}_{\text {Total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}=200+100+300=600 \mathrm{~W}$
3. Find reactive power $\mathrm{Q}_{\text {Total }}$
$\mathrm{Q}_{\text {Total }}=\mathrm{Q}_{1}-\mathrm{Q}_{2}+\mathrm{Q}_{3}=0-50+400=350 \mathrm{VAR}$ (induc)
4. Find apparent power $S_{\text {Total }}$

$$
S_{\text {Total }}=\sqrt{600^{2}+350^{2}}=695 \mathrm{VA}
$$

5. Find power factor
$\cos \theta=\frac{600}{695}=0.86$ (inductive)

Power Factor Correction

- Reactive power leads to power losses
- To decrease the reactive power, we need to have power factor as close to 1 as possible
- The process of introducing reactive element to bring the power factor closer to 1 is called power factor correction

To correct inductive load we add a capacitor and to improve capacitive load we add inductor

Example
 Find a value for an element to increase power factor to 1

Since loads in total are inductive, we need to add a capacitor to remove all reactive power.

So we need to get away of $\mathrm{Q}=350$ VAR

```
We know that \(\mathrm{Q}=\mathrm{V}^{2} / \mathrm{X}\) or \(\mathrm{X}_{\mathrm{C}}=\mathrm{V}^{2} / \mathrm{Q}\)
\(X_{C}=100^{2} / 350=28.57 \Omega\)
    \(\mathrm{C}=\frac{1}{2 \pi \mathrm{fX}_{\mathrm{C}}}=\frac{1}{2 \pi \cdot 50 \mathrm{~Hz} \cdot 28.57 \Omega}=1.11 \cdot 10^{-4} \mathrm{~F}=111 \mu \mathrm{~F}\)
```

$$
\begin{aligned}
& \mathrm{P}_{\text {Total }}=600 \mathrm{~W} \\
& Q_{\text {Total }}=350 \mathrm{VAR} \text { (inductive) } \\
& \mathrm{S}_{\text {Total }}=695 \mathrm{VA} \\
& \cos \theta=0.86 \text { (inductive) }
\end{aligned}
$$

Example

Find a value for an element to increase power factor to 0.95

Since loads in total are inductive, we need to add a capacitor

$$
\cos \theta^{\prime}=0.95=\frac{P}{S}
$$

P stays the same, so new $S^{\prime}=\frac{P}{0.95}=\frac{600}{0.95}=631,58 \mathrm{VA}$
$\theta^{\prime}=\cos ^{-1}(0.95)=18,19^{\circ}$
New $Q^{\prime}=S^{\prime} \sin \left(\theta^{\prime}\right)=631,58^{*} \sin \left(18,19^{\circ}\right)=631,58^{*} 0.312=-197.21 \mathrm{VAR}$

So we need to get away of $\Delta Q=350-197.21=152.79$ VAR

We know that $\mathrm{Q}=\mathrm{V}^{2} / \mathrm{X}$ or $\mathrm{X}_{\mathrm{C}}=\mathrm{V}^{2} / \mathrm{Q}$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}=100^{2} / 152.79=65.45 \Omega \\
& \quad \mathrm{C}=\frac{1}{2 \pi f \mathrm{X}_{\mathrm{C}}}=\frac{1}{2 \pi \cdot 50 \mathrm{~Hz} \cdot 65.45 \Omega}=4.86 \cdot 10^{-5} \mathrm{~F}=49 \mu \mathrm{~F}
\end{aligned}
$$

Suggested reading

Introductory Circuit Analysis
-Kap 20: 20.1-20.9

Suggested exercises

- Kap 20: 11, 14, 15, 17, 18, 19

