

HE1027 Electrical Principals

Power in AC Current

Power in series and parallel

$$P_{total} = I_{total} * V_{total}$$

$$\begin{aligned} &\mathbf{I}_{\text{total}} = \mathbf{I}_1 = \mathbf{I}_2 = \mathbf{I}_3 \\ &\mathbf{V}_{\text{total}} = \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3 \end{aligned}$$

$$P_{total} = I_{total}^{*}(V_{1}+V_{2}+V_{3})$$

$$P_{total} = I_{total}^{*}V_{1}+I_{total}^{*}V_{2}+I_{total}^{*}V_{3}$$

$$P_{total} = I_{1}^{*}V_{1}+I_{2}^{*}V_{2}+I_{3}^{*}V_{3}$$

$$P_{total} = P_{1}+P_{2}+P_{3}$$

$$P_{total} = I_{total} * V_{total}$$

$$V_{\text{total}} = V_1 = V_2 = V_3$$
$$I_{\text{total}} = I_1 + I_2 + I_3$$

$$\begin{aligned} & P_{total} = (I_1 + I_2 + I_3)^* V_{total} \\ & P_{total} = V_{total}^* V_1 + V_{total}^* I_2 + V_{total}^* I_3 \\ & P_{total} = V_1^* I_1 + V_2^* I_2 + V_3^* I_3 \\ & P_{total} = P_1 + P_2 + P_3 \end{aligned}$$

Real Power (aktiv effekt)

The actual amount of power being used, or dissipated, in a circuit is called real power

It is measured in watts (symbolized by the capital letter P, as always)

 $P = VI \cos \theta$

 θ =0° for purely resistive θ =90° for purely inductive θ =-90° for purely capacitive

Reactive Power (reaktiv effekt)

- Inductors and capacitors do not decrease power
- They cause drops of voltage and draws of current that creates impression that they actually use power
- This "phantom power" is called reactive power
- It is measured in a unit called Volt-Amps-Reactive (VAR)
- The mathematical symbol for reactive power is the capital letter Q

$$Q=I^2X$$

$$Q=V^2/X$$

Apparent Power (skenbar effekt)

- The combination of real power and reactive power is called apparent power
- It is the product of a circuit's voltage and current, without reference to phase angle
- Apparent power is measured in the unit of Volt-Amps (VA) and is symbolized by the capital letter S

S=VI

 $S=P/\cos\theta$

0=170030

S=P+Qi for inductive load S=P-Qi for conductive load $S = \sqrt{P^2 + Q^2}$

Apparent Power

Reactive Power (air)

Real Power (chips)

Power Diagram

From previous slide:

ExampleFind P, Q and S

Real power P=Vlcos θ =120*2*1=240W

since it is a resistive network $\cos\theta$ =1 and $\sin\theta$ =0

Reactive power Q=VIsinθ=120*2*0=0VAR
Apparent power S=240+0i=240VA

ExampleFind P, Q and S

Real power P=Vlcos θ =120*1.989*0=0W Reactive power Q=Vlsin θ =120*1.989*1=238.73VAR $Q = I^2X = 1.989^2*60.319 = 238.6VAR$ $Q = V^2/X = 120^2/60.319 = 238.73VAR$ Apparent power S=VI=120*1.989=238.73VA

ExampleFind P, Q and S

Real power $P=I^2R=119.395W$

Reactive power Q=I²X=119.998VAR

Apparent power S=119.395+119.998i

Power Factor

Since $P=VI\cos\theta$ and S=VI, $P=S\cos\theta$

$$\cos\theta = \frac{P}{S}$$

A ratio of the real power to apparent power $(\cos\theta)$ is known as power factor

ExampleFind power factor

Real power $P=I^2R=119.395W$

Reactive power Q=I²X=119.998VAR

Apparent power S=119.395-119.998i VA

$$\cos \theta = \frac{P}{S} = \frac{119}{169} = 0.704 = 70.4\%$$

P_{Total}, Q_{Total} and S_{Total}

- 1. Find the real power and reactive power for each branch of the circuit.
- 2. The total real power of the system P_{Total} is then a sum of average power delivered to each branch
- 3. The total reactive power Q_{Total} is the difference between the reactive power of the inductive loads and that of the capacitive loads
- 4. The total apparent power $S_T = \sqrt{P_{Total}^2 + Q_{Total}^2}$
- 5. The total power factor is $\cos \theta = \frac{P_{Total}}{S_{Total}}$

Example

Find S_{Total} and power factor

1. Find P and Q for each element

$$P_1=200W$$
 and $Q_1=0VAR$

$$P_2 = 100W$$
 and $Q_2 = -50VAR$ (cap)

$$P_3 = 300W$$

$$\cos\theta = P/S \rightarrow S_3 = P_3/\cos\theta_3 = 300/0.6 = 500VA$$

$$Q=VIsin\theta=Ssin\theta$$

$$\theta_3 = \arccos(0.6) = 53.13^{\circ}$$

$$Q_3 = 500 * \sin(53.13^\circ) = 500 * 0.8 = +400 \text{VAR (induc)}$$

2. Find real power P_{Total}

$$P_{Total} = P_1 + P_2 + P_3 = 200 + 100 + 300 = 600W$$

3. Find reactive power Q_{Total}

$$Q_{Total} = Q_1 - Q_2 + Q_3 = 0-50+400=350VAR$$
 (induc)

4. Find apparent power S_{Total}

$$S_{Total} = \sqrt{600^2 + 350^2} = 695VA$$

5. Find power factor

$$\cos \theta = \frac{600}{695} = 0.86 \text{ (inductive)}$$

Power Factor Correction

- Reactive power leads to power losses
- To decrease the reactive power, we need to have power factor as close to 1 as possible
- The process of introducing reactive element to bring the power factor closer to
 1 is called power factor correction

To correct inductive load we add a capacitor and to improve capacitive load we add inductor

Example

Find a value for an element to increase power factor to 1

So we need to get away of Q=350VAR

We know that $Q=V^2/X$ or $X_C=V^2/Q$

$$\begin{split} X_C &= 100^2/350 = 28.57\Omega \\ C &= \frac{1}{2\pi f X_C} = \frac{1}{2\pi \cdot 50 Hz \cdot 28.57\Omega} = 1.11 \cdot 10^{-4} F = 111 \mu F \end{split}$$

 P_{Total} =600W Q_{Total} =350VAR (inductive) S_{Total} =695VA $\cos\theta$ =0.86 (inductive)

Example

Find a value for an element to increase power factor to 0.95

Since loads in total are inductive, we need to add a capacitor

$$\cos \theta' = 0.95 = \frac{P}{S}$$

P stays the same, so new S' = $\frac{P}{0.95} = \frac{600}{0.95} = 631,58VA$

 $\theta' = \cos^{-1}(0.95) = 18,19^{\circ}$

New Q'=S' $\sin(\theta')$ =631,58* $\sin(18,19^\circ)$ =631,58*0.312=-197.21VAR

$$P_{Total}$$
=600W
 Q_{Total} =350VAR (inductive)
 S_{Total} =695VA
 $\cos\theta$ =0.86 (inductive)

So we need to get away of $\Delta Q = 350-197.21 = 152.79VAR$

We know that $Q=V^2/X$ or $X_C=V^2/Q$

$$\begin{split} X_C &= 100^2 / 152.79 = 65.45\Omega \\ C &= \frac{1}{2\pi f X_C} = \frac{1}{2\pi \cdot 50 \text{Hz} \cdot 65.45\Omega} = 4.86 \cdot 10^{-5} \text{F} = 49 \mu \text{F} \end{split}$$

Suggested reading

Introductory Circuit Analysis

-Kap 20: **20.1 - 20.9**

Suggested exercises

• Kap 20: 11, 14, 15, 17, 18, 19