

HE1027 Electrical Principals

Series and Parallel AC Circuits

Inductor in AC Current

Voltage across the inductor is directly related to the inductance of the coil and the rate of change of current through the coil

$$V_L = L \frac{di_L}{dt}$$

From before, instantaneous value of current $i = I_m \sin \alpha = I_m \sin \omega t$ and $\frac{d}{dt}(sin2x) = 2cos2x$

$$V_{L} = L \frac{d}{dt} I_{m} \sin \omega t = L I_{m} \frac{d}{dt} (\sin \omega t) = L I_{m} (\omega \cos \omega t) = \omega L I_{m} \sin(\omega t + 90^{\circ})$$

$$\omega L = X_{L} - \text{reactance of an inductor}$$

$$X_{L} = \frac{V_{m}}{I_{m}}$$

Since v_L leads i_L by 90°, impedance of inductive element is Z₁ = X₁ ∠90°=iX₁

Capacitor in AC Current

The capacitive current is directly related to the rate of the voltage across the capacitor and the rate of change of involved voltage

$$i_C = C \frac{dV_C}{dt}$$

From before, instantaneous value of voltage $v = V_m \sin \alpha = V_m \sin \omega t$

$$i_{C} = C \frac{d}{dt} V_{m} \sin \omega t = C V_{m} (\omega \cos \omega t) = \omega C V_{m} \sin(\omega t + 90^{\circ})$$

$$\frac{1}{\omega c} = X_{C} - \text{reactance of a capacitor}$$

$$X_{C} = \frac{V_{m}}{I_{m}}$$
Since i_{C} leads v_{C} by 90°, impedance of capacitive element is $Z_{C} = X_{C} \angle -90^{\circ} = -iX_{C}$

$$u_{C}$$

$$\frac{1}{2} \pi \frac{3}{2} \pi \frac{2\pi}{\omega t}$$

Impendence Diagram

- Combination of different elements will have total impedances that extend from -90° to +90°
- If the total impedance is close to 0°, it is resistive in nature
- If it is closer to 90°, it is inductive in nature
- If it is closer to -90°, it is capacitive in nature

Frequency and Inductor

- ω=2*π*f
- $X_L = \omega L = 2^* \pi^* f^* L$

$\mathbf{A} X_C (\mathbf{k} \Omega)$ **Frequency and Capacitor** 5 4 $C = 0.01 \ \mu F$ 3 • $X_{C} = \frac{1}{\omega C} = \frac{1}{2^{*}\pi^{*}f^{*}C}$ Increasing C 2 $C = 0.03 \ \mu F$ 1 0 15 10 5 20 If f=0Hz -> X_C = $\infty \Omega$ If $f=\infty Hz \rightarrow X_C=0\Omega$ f = very high frequencies f = 0 Hz

f(kHz)

Series Configuration

• Total impendence is a sum of all individual impendences $Z_T=Z_1+Z_2+Z_3+Z_4+...+Z_n$

- $Z_T = Z_1 + Z_2 + Z_3 = R + iX_L iX_C = 6 + i10 i12 = 6\Omega i2\Omega$ $Z_T = 6.32\Omega \angle -18.43^{\circ}$
- $I_T = I_1 = I_2 = I_3 = ... = I_n$
- $E = V_1 + V_2 + V_3 + V_4 + ... + V_n$
- $P=EI^*cos|\theta_E \theta_I|$

Example

Find total impendence, current, V_R , V_L and P_T . Draw Impendence Diagram

- 2. Find total impendence $Z_T = Z_R + Z_I = 3\Omega + i4\Omega = 5\Omega \angle 53.13^\circ$
- 3. Find current

 $I=E/Z_{T}=(100 \angle 0^{\circ})/(5 \angle 53.13^{\circ})=100/5 \angle (0-53.13)=20A \angle -53.13^{\circ}$

- 4. Find V_R $V_R = IZ_R = 20A \ge -53.13^{\circ} \cdot 3\Omega \ge 0^{\circ} = 60V \ge -53.13^{\circ}$
- Find V_L
 V_L=IZ_L=20A∠-53.13°*Ω∠90°=80V∠36.87°
- 6. Find P_T

 $P_T = EI^* \cos[\theta_E - \theta_I] = 100^* 20^* \cos[0^\circ - 53.13^\circ] = 2000^* \cos(53.13^\circ) = 1200W$

Frequency Response for Series AC Circuits

• For ideal resistor frequency has no effect

•
$$X_L = 2\pi f L$$

•
$$X_C = \frac{1}{2\pi fC}$$

In series connection, element with largest impedance has the greatest impact

- At low frequency impendence of capacitor has a larger impact
- At high frequency impendence of resistor has a larger impact
- Breaking point is at X_c=R
- Since $X_C = \frac{1}{2\pi fC}$, then $f = \frac{1}{2\pi RC}$

- At low frequency impendence of resistor has a larger impact
- At high frequency impendence of inductor has a larger impact
- Breaking point is at X_L=R
- Since $X_L = 2\pi f L$, then $f = \frac{R}{2\pi C}$

R-L low pass filter and high pass filter

Series R-L-C (Resistor-Inductor-Capacitor) AC Circuit

• $Z_T = Z_1 + Z_2 + Z_3$

• Since resistor don't change over time it basically just ignored

- At low frequency impendence of capacitor has a larger impact
- At hight frequency impendence of inductor has a larger impact

• Breaking point is at
$$X_L = X_c \rightarrow 2\pi fL = \frac{1}{2\pi fC} \rightarrow f = \frac{1}{2\pi \sqrt{LC}}$$

Parallel Configuration

$$\frac{1}{Z_T} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \dots + \frac{1}{Z_n}$$

$$\mathsf{E}=\mathsf{V}_1=\mathsf{V}_2=\mathsf{V}_3=\ldots=\mathsf{V}_n$$

$$|_{T} = |_{1} + |_{2} + |_{3} + \dots + |_{n}$$

 $\mathsf{P}=\mathsf{E}\mathsf{I}^*\mathsf{cos}|\theta_\mathsf{E}^-\theta_\mathsf{I}|$

Example

Find total impendence, current, V_R , V_L and P_T . Draw Impendence Diagram

- . Convert *i* into phasor notation $i=14.14 \sin \omega t = 10 \ge 0^{\circ}$
- 2. Find total impendence $1/Z_T = 1/Z_R + 1/Z_C = 1/1.67\Omega + 1/i1.25\Omega = 0.599\Omega + i0.8\Omega$ $Z_T = 1 \Omega \ge -53.13^\circ$
- Find voltage
 E=I*Z_T=(10∠0°)*(1∠-53.13°)=100*1∠(0+(-53.13))=10V∠-53.13°
- 4. Find I_R $I_R = E/Z_R = (10V \ge -53.13^\circ)/(1.67\Omega \ge 0^\circ) = 6A \ge -53.13^\circ$
- 5. Find I_C

 $I_C = E/Z_C = (10V \le -53.13^\circ)/(1.25\Omega \le -90^\circ) = 8A \le 36.87^\circ$

6. Find P_T

 $P_T = EI^* \cos[\theta_E - \theta_I] = 10^* 10^* \cos[-53.13^\circ - 0^\circ] = 100^* \cos(53.13^\circ) = 60W$

Parallel R-L (Resistor-Inductor) AC Circuit

- $1/Z_T = 1/Z_1 + 1/Z_2$
- In parallel connection, element with smallest impedance has the greatest impact
- At low frequency impendence of inductor has a larger impact
- At high frequency impendence of resistor has a larger impact
- Breaking point is at $X_L=R$
- Since $X_L = 2\pi f L$, then $f = \frac{R}{2\pi L}$

Parallel R-C (Resistor-Capacitor) AC Circuit

- $Z_T = Z_1 + Z_2$
- At low frequency impendence of resistor has a larger impact
- At high frequency impendence of capacitor is larger than of capacitor
- Breaking point is at X_c=R
- Since $X_C = \frac{1}{2\pi fC}$, then $f = \frac{1}{2\pi RC}$

Resonance

Suggested reading

Introductory Circuit Analysis

-Kap 14: **14.2 - 14.9** -Kap 22: 22:1-22.8, 22.11

Suggested exercises

- Kap 14: 5, 17, 35, 37, 39, 41, 43, 49, 53, 55
- Kap 22: 19, 21, 23, 25