HE1027 Electrical Principals

Series and Parallel AC Circuits

Inductor in AC Current

Voltage across the inductor is directly related to the inductance of the coil and the rate of change of current through the coil
$V_{L}=L \frac{d i_{L}}{d t}$

From before, instantaneous value of current $i=I_{m} \sin \alpha=I_{m} \sin \omega t$ and $\frac{d}{d t}(\sin 2 x)=2 \cos 2 x$
$V_{L}=L \frac{d}{d t} I_{m} \sin \omega t=L I_{m} \frac{d}{d t}(\sin \omega t)=L I_{m}(\omega \cos \omega t)=\omega L I_{m} \sin \left(\omega t+90^{\circ}\right)$
$\omega L=X_{L}$ - reactance of an inductor
$X_{L}=\frac{V_{m}}{I_{m}}$
Since v_{L} leads $i_{\llcorner }$by 90°, impedance of inductive element is $\mathrm{Z}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}=\mathrm{i} \mathrm{X}_{\mathrm{L}}$

Capacitor in AC Current

The capacitive current is directly related to the rate of the voltage across the capacitor and the rate of change of involved voltage
$i_{C}=C \frac{d V_{C}}{d t}$

From before, instantaneous value of voltage $v=V_{m} \sin \alpha=V_{m} \sin \omega t$
$i_{C}=C \frac{d}{d t} V_{m} \sin \omega t=C V_{m}(\omega \cos \omega t)=\omega C V_{m} \sin \left(\omega t+90^{\circ}\right)$
$\frac{1}{\omega C}=X_{C}$ - reactance of a capacitor
$X_{C}=\frac{V_{m}}{I_{m}}$

Since i_{c} leads v_{C} by 90°, impedance of capacitive element is $\mathrm{Z}_{\mathrm{C}}=\mathrm{X}_{\mathrm{C}} \angle-90^{\circ}=-\mathrm{i} \mathrm{X}_{\mathrm{C}}$

Impendence Diagram

- Combination of different elements will have total impedances that extend from -90° to $+90^{\circ}$
- If the total impedance is close to 0°, it is resistive in nature
- If it is closer to 90°, it is inductive in nature
- If it is closer to -90°, it is capacitive in nature

Frequency and Inductor

- $\omega=2^{*} \pi^{*} f$
- $X_{L}=\omega L=2^{*} \Pi^{*} f^{*} L$

If $\mathrm{f}=0 \mathrm{~Hz} \rightarrow \mathrm{X}_{\mathrm{L}}=0 \Omega$
$f=0 \mathrm{~Hz}$

Reality:

$f=$ very high frequencies

Frequency and Capacitor

- $X_{C}=\frac{1}{\omega C}=\frac{1}{2^{*} \pi^{*} f^{\star} C}$

If $f=0 \mathrm{~Hz}->\mathrm{X}_{\mathrm{C}}=\infty \Omega$
$f=0 \mathrm{~Hz}$
-

If $f=\infty \mathrm{Hz}->\mathrm{X}_{\mathrm{C}}=0 \Omega$
$f=$ very high frequencies

Series Configuration

- Total impendence is a sum of all individual impendences
$Z_{T}=Z_{1}+Z_{2}+Z_{3}+Z_{4}+\ldots+Z_{n}$

- $\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+Z_{3}=R+i X_{L}-i X_{C}=6+i 10-i 12=6 \Omega-i 2 \Omega \quad Z_{T}=6.32 \Omega \angle-18.43^{\circ}$
- $I_{T}=I_{1}=I_{2}=I_{3}=\ldots=I_{n}$
- $\mathrm{E}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\mathrm{V}_{4}+\ldots+\mathrm{V}_{\mathrm{n}}$
- $\mathrm{P}=\mathrm{El}{ }^{*} \cos \left|\theta_{\mathrm{E}^{-}} \theta_{\|}\right|$

Example

Find total impendence, current, V_{R}, V_{L} and P_{T}. Draw Impendence Diagram

1. Convert e into phasor notation
$e=141.4 \sin \omega t=100 \angle 0^{\circ}$
2. Find total impendence
$Z_{T}=Z_{R}+Z_{L}=3 \Omega+i 4 \Omega=5 \Omega \angle 53.13^{\circ}$
3. Find current
$\mathrm{I}=\mathrm{E} / \mathrm{Z}_{\mathrm{T}}=\left(100 \angle 0^{\circ}\right) /\left(5 \angle 53.13^{\circ}\right)=100 / 5 \angle(0-53.13)=20 \mathrm{~A} \angle-53.13^{\circ}$
4. Find V_{R}
$V_{R}=I Z_{R}=20 \mathrm{~A} \angle-53.13^{\circ} 3 \Omega \angle 0^{\circ}=60 \mathrm{~V} \angle-53.13^{\circ}$

5. Find V_{L}
$\mathrm{V}_{\mathrm{L}}=\mathrm{IZ} \mathrm{Z}_{\mathrm{L}}=20 \mathrm{~A} \angle-53.13^{\circ} \Omega \angle 90^{\circ}=80 \mathrm{~V} \angle 36.87^{\circ}$
6. Find P_{T}
$P_{T}=E I^{*} \cos \left|\theta_{\mathrm{E}^{-}} \theta_{\|}\right|=100^{*} 20^{*} \cos \left|0^{\circ}-53.13^{9}\right|=2000^{*} \cos \left(53.13^{\circ}\right)=1200 \mathrm{~W}$

Frequency Response for Series AC Circuits

- For ideal resistor frequency has no effect
- $X_{L}=2 \pi f L$
- $X_{C}=\frac{1}{2 \pi f C}$

In series connection, element with largest impedance has the greatest impact

Series R-C (Resistor-Capacitor) AC Circuit

- $\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$

- At low frequency impendence of capacitor has a larger impact
- At high frequency impendence of resistor has a larger impact
- Breaking point is at $X_{c}=R$
- Since $X_{C}=\frac{1}{2 \pi f C^{\prime}}$, then $f^{\prime}=\frac{1}{2 \pi R C}$

R-C low pass filter and high pass filter

RC low pass filter

RC high pass filter

Series R-L (Resistor-Inductor) AC Circuit

${ }^{2}{ }^{2}$

- $\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$

- At low frequency impendence of resistor has a larger impact
- At high frequency impendence of inductor has a larger impact
- Breaking point is at $X_{L}=R$
- Since $X_{L}=2 \pi f L$, then $f^{\prime}=\frac{R}{2 \pi C}$

Band-pass filter and band-stop filter

Series R-L-C (Resistor-Inductor-Capacitor) AC Circuit

- $\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}$

- Since resistor don't change over time it basically just ignored
- At low frequency impendence of capacitor has a larger impact
- At hight frequency impendence of inductor has a larger impact
- Breaking point is at $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{c}} \rightarrow 2 \pi f L=\frac{1}{2 \pi f C} \rightarrow f^{\prime}=\frac{1}{2 \pi \sqrt{L C}}$

Parallel Configuration

$$
\frac{1}{Z_{T}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}+\cdots+\frac{1}{Z_{n}}
$$

$$
\mathrm{E}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\ldots=\mathrm{V}_{\mathrm{n}}
$$

$$
I_{T}=I_{1}+I_{2}+I_{3}+\ldots+I_{n}
$$

$$
\mathrm{P}=\mathrm{EI} \mathrm{E}^{*} \cos \left|\theta_{\mathrm{E}^{-}} \theta_{\|}\right|
$$

Example
Find total impendence, current, V_{R}, V_{L} and P_{T}. Draw Impendence Diagram

1. Convert i into phasor notation
$i=14.14 \sin \omega t=10 \angle 0^{\circ}$
2. Find total impendence

$$
\begin{aligned}
& 1 / Z_{T}=1 / Z_{R}+1 / Z_{C}=1 / 1.67 \Omega+1 / i 1.25 \Omega=0.599 \Omega+i 0.8 \Omega \\
& Z_{T}=1 \Omega \angle-53.13^{\circ}
\end{aligned}
$$

3. Find voltage

$$
E=I^{*} Z_{T}=\left(10 \angle 0^{\circ}\right)^{*}\left(1 \angle-53.13^{\circ}\right)=100^{*} 1 \angle(0+(-53.13))=10 \mathrm{~V} \angle-53.13^{\circ}
$$

4. Find I_{R}
$\mathrm{I}_{\mathrm{R}}=\mathrm{E} / \mathrm{Z}_{\mathrm{R}}=\left(10 \mathrm{~V} \angle-53.13^{\circ}\right) /\left(1.67 \Omega \angle 0^{\circ}\right)=6 \mathrm{~A} \angle-53.13^{\circ}$
5. Find I_{C}
$\mathrm{I}_{\mathrm{C}}=\mathrm{E} / \mathrm{Z}_{\mathrm{C}}=\left(10 \mathrm{~V} \angle-53.13^{\circ}\right) /\left(1.25 \Omega \angle-90^{\circ}\right)=8 \mathrm{~A} \angle 36.87^{\circ}$
6. Find P_{T}
$P_{T}=E I^{*} \cos \left|\theta_{\mathrm{E}^{-}} \theta_{\mid}\right|=10^{*} 10^{*} \cos \left|-53.13^{\circ}-0^{\circ}\right|=100^{*} \cos \left(53.13^{\circ}\right)=60 \mathrm{~W}$

Parallel R-L (Resistor-Inductor) AC Circuit

- $1 / Z_{T}=1 / Z_{1}+1 / Z_{2}$
- In parallel connection, element with smallest impedance has the greatest impact
- At low frequency impendence of inductor has a larger impact
- At high frequency impendence of resistor has a larger impact
- Breaking point is at $X_{L}=R$
- Since $X_{L}=2 \pi f L$, then $f^{\prime}=\frac{R}{2 \pi L}$

Parallel R-C (Resistor-Capacitor) AC Circuit

- $\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}$
- At low frequency impendence of resistor has a larger impact
- At high frequency impendence of capacitor is larger than of capacitor
- Breaking point is at $X_{c}=R$
- Since $X_{C}=\frac{1}{2 \pi f C^{\prime}}$, then $f^{\prime}=\frac{1}{2 \pi R C}$

Resonance

- $Z_{C}=\frac{1}{2 \pi f C}$

At 159.155 Hz :

$$
\begin{aligned}
& Z_{L}=2 \pi * 159.155 * 0.1=100 \angle 90^{\circ} \\
& Z_{C}=\frac{1}{2 \pi * 159.155 * 0.0001}=100 \angle-90^{\circ} \\
& Z_{T}=100 \angle 90^{\circ}+100 \angle-90^{\circ}=0 \Omega
\end{aligned}
$$

mA - mag(v1\#branch)

Suggested reading

Introductory Circuit Analysis
-Kap 14: 14.2-14.9
-Kap 22: 22:1-22.8, 22.11

Suggested exercises

- Kap 14: 5, 17, 35, 37, 39, 41, 43, 49, 53, 55
- Kap 22: 19, 21, 23, 25

