

HE1027 Electrical Principals

Capacitors and Inductors

Electric Field

- Around each point in space when charge is present in any form exists an electric field
- The strength of electric field is drawn using electric flux lines
- Electric flux lines always go from a positively charged points to negative
- Electric flux lines always go from a perpendicular to charged surfaces

Capacitor (kondensator)

- If two parallel plates are connected to a circuit, these plates will collect a charge
- These plates separated by a gap are known as capacitors
- Take two electrical conductors and separate them with an insulator and you make a capacitor
- Capacitors store electrical energy
 - adding electrical energy to a capacitor is called charging
 - releasing the energy from a capacitor is known as discharging
 - a capacitor generally releases its energy much more rapidly (ex. flash camera)

Capacitance

- Capacitance is a measure of a capacitor's ability to store charge on it (to store capacity)
- Capacitance is measured in units called farads: 1-farad capacitor can store one coulomb of charge at 1 volt:

A 1-farad capacitor would typically be pretty big. It might be as big as a can of tuna or a 1-liter soda bottle, depending on the voltage it can handle. For this reason, capacitors are typically measured in microfarads

- Capacitance value and depends upon three main factors:
 - the type of material which separates the two plates (ϵ)
 - surface area of conductive plates (A)
 - distance between the two plates (d)

$$C = \epsilon \frac{A}{d}$$

Charging Phase in Capacitive Network

Time	Е	V _c	E-V _c	Current
0	100	0	100	Really fast
1	100	50	50	Fast
2	100	80	20	Medium
3	100	90	10	Slow
4	100	95	5	Very slow
5	100	96	4	Very slow
6	100	97	3	Very slow
7	100	98	2	Very slow
8	100	99	1	Very slow
9	100	100	0	Stopped

Concept of t_{0-} and t_{0+}

Switching between Contacts

R-C Circuit

RC circuit is a circuit with both a resistor (R) and a capacitor (C)

Time constant τ (tau)	τ=RC	
Voltage of charging capacitor over time with an initial value $V_{initial}$	$v_c(t) = V_{final} + (V_{initial} - V_{final})e^{-\frac{t}{\tau}}$	
Voltage of charging capacitor over time with no initial value $(V_{initial} = 0 \text{ and } V_{fianl} = E)$	$v_c(t) = E + (0 - E)e^{-\frac{t}{\tau}} =$ $= E\left(1 - e^{-\frac{t}{\tau}}\right)$	
Voltage of discharging capacitor over time	$v_c(t) = E - E\left(1 - e^{-\frac{t}{\tau}}\right) = Ee^{-\frac{t}{\tau}}$	
Current of capacitor over time	$i_c(t) = \frac{E}{R} = \frac{E}{R}e^{-\frac{t}{\tau}}$	
Voltage of a resistor over time	$v_r(t) = i_c R = \left(\frac{E}{R}e^{-\frac{t}{\tau}}\right)R = Ee^{-\frac{t}{\tau}}$	
Math contestant e	e ≈2.718	

R-C Circuit

	$v_c = E(1-e^{-t/\tau})$	$i_c = \frac{E}{R} e^{-t/\tau}$	
t=0	v_c =E(1-e ⁰)=E(1-1)=0V	i_c =(E/R)*e ⁰ =(E/R)*1= E/R	
t=τ	v_c =E(1-e ^{-τ/τ})=E(1-e ⁻¹)= =E(1-0.368)=0.632E	$i_c = (E/R)^* e^{-\tau/\tau} = 0.368^* (E/R)$	
t=2τ	v_c =E(1-e ^{-2τ/τ})=E(1-e ⁻²)= =E(1-0.135)=0.865E	$i_c = (E/R)^* e^{-2\tau/\tau} = 0.135^* (E/R)$	
t=5τ	v_c =E(1-e ^{-5τ/τ})=E(1-e ⁻⁵)= =E(1-0.007)=0.993E≈E	i _c =(E/R)*e ^{-5τ/τ} =0.007*(E/R)≈0	

R-C Circuit

A capacitor is a short-circuit at the			
moment when a switch is just			
closed			

$$i_c = \frac{\mathsf{E}}{\mathsf{R}} \, \mathsf{e}^{-\mathsf{t}/\tau}$$

$$v_c = E(1-e^0) = E(1-1) = 0V$$

$$i_c = (E/R)^*e^0 = (E/R)^*1 = E/R$$

$$t=\tau$$

During charging, the major change in voltage and current happens during the first time constant

 $^{\tau/\tau}$ =0.368*(E/R)

$$v_c = E(1-e^{-2\tau/\tau}) = E(1-e^{-2}) =$$

The charging phase of a capacitor has essentially ended after 5 time constants

$$i_c = (E/R)^* e^{-2\tau/\tau} = 0.135^* (E/R)$$

The current is essentially 0A after 5 time constants

$$t=5\tau$$

$$v_c$$
=E(1-e^{-5τ/τ})=E(1-e⁻⁵)=
=E(1-0.007)=0.993E≈E

$$i_c = (E/R)^* e^{-5\tau/\tau} = 0.007^* (E/R) \approx 0$$

A capacitor is a open-circuit at the moment when it is fully charged

Example:

Find voltage of capacitor 50ms after the connection if E=20V, $C=4\mu F$ and $R=5k\Omega$

Determine time T

$$\tau = RC = 4\mu F *5k\Omega = 0.02s$$

Determine v_c

$$v_c(t) = V_{final} + (V_{initial} - V_{final})e^{-\frac{t}{\tau}}$$

 $v_c(t) = 20 + (0 - 20)e^{-\frac{t}{\tau}}$

$$v_c(0.05) = 20 - 20e^{-\frac{0.05}{0.02}}$$

$$v_c(0.05) = 20 - 20e^{-2.5}$$

$$v_c(0.05) = 20 - 1.64$$

$$v_c(0.05) = 18.36V$$

Capacitors in Series and Parallel

$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \frac{1}{C_{4}} + \dots + \frac{1}{C_{n}}$$

$$C_T = C_1 + C_2 + C_3 + C_4 + ... + C_n$$

Inductor (spole)

- Current flowing through a conductor generates a magnetic field
- The magnetic field starts out small, as current yet flows in only part of the conductor. Once steady current is established, magnetic field quantity will be stable
- Magnetic field stores charge
- Faraday's law of induction says that we should have very long conductor as a coil for best result. A magnet inside the coil will help. Such element is called inductor
- Inductance L
- Used for signal filtering, sensors, dynamics
- Two inductors form a transformer

R-L curcuit

Time constant $\tau = \frac{L}{R}$

Current of an inductor over time with an initial value $I_{initial}$

$$i_L(t) = I_{final} + (I_{initial} - I_{final})e^{-\frac{t}{\tau}}$$

$$I_{final} = \frac{E}{R_{Total}}$$

Inductors in Series and Parallel

 $L=L_1+L_2+L_3$

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

Inductor and Magnetic Field

- Movement of electrons causes magnetic field
- BECAUSE electrons and magnetic field are friends
- SO moving magnetic field causes movement of electrons

Transformer

Magnet Produces Electricity

One Phase Electricity

Three Phase Electricity

Suggested reading

Introductory Circuit Analysis

-Kap 10: 10.2 - 10.4, **10.5 - 10.9**, 10.11 - 10.13

-Kap 11: 11.2 - 11.3, **11.4 - 11.8**, 11.9 - 11.12

-Kap 23: 23.1 - 23.3

-Kap 24: 2

Suggested exercises

- -Capacitors (kapital 10): 19, 21, 25, 29, 37, 42, 43
- -Inductors (kapital 11): 11, 13, 15, 17, 21, 23, 24