HE1027 Electrical Principals

Capacitors and Inductors

Electric Field

- Around each point in space when charge is present in any form exists an electric field
- The strength of electric field is drawn using electric flux lines
- Electric flux lines always go from a positively charged points to negative
- Electric flux lines always go from a perpendicular to charged surfaces

Capacitor (kondensator)

- If two parallel plates are connected to a circuit, these plates will collect a charge
- These plates separated by a gap are known as capacitors
- Take two electrical conductors and separate them with an insulator and you make a capacitor
- Capacitors store electrical energy
- adding electrical energy to a capacitor is called charging
- releasing the energy from a capacitor is known as discharging
- a capacitor generally releases its energy much more rapidly (ex. flash camera)

Capacitance

- Capacitance is a measure of a capacitor's ability to store charge on it (to store capacity)
- Capacitance is measured in units called farads: 1-farad capacitor can store one coulomb of charge at 1 volt:

$$
\mathrm{C}(\text { capacitance })=\frac{\mathrm{Q}(\text { charge })}{\mathrm{V}(\text { voltage })}
$$

A 1-farad capacitor would typically be pretty big. It might be as big as a can of tuna or a 1-liter soda bottle, depending on the voltage it can handle. For this reason, capacitors are typically measured in microfarads

- Capacitance value and depends upon three main factors:
- the type of material which separates the two plates (ϵ)
- surface area of conductive plates (A)
- distance between the two plates (d)

$$
\mathrm{C}=\epsilon \frac{\mathrm{A}}{\mathrm{~d}}
$$

Charging Phase in Capacitive Network

	Time	E	V_{c}	E-V	Current
TE	0	100	0	100	Really fast
	1	100	50	50	Fast
$\uparrow^{v_{c}}$	2	100	80	20	Medium
	3	100	90	10	Slow
	4	100	95	5	Very slow
	5	100	96	4	Very slow
	6	100	97	3	Very slow
$\uparrow^{i}{ }_{c}$	7	100	98	2	Very slow
	8	100	99	1	Very slow
	9	100	100	0	Stopped

Concept of t_{0-} and $\mathrm{t}_{0_{+}}$

Switching between Contacts

R-C Circuit

RC circuit is a circuit with both a resistor (R) and a capacitor (C)

Time constant τ (tau)	$\tau=R C$
Voltage of charging capacitor over time with an initial value $V_{\text {initial }}$	$v_{c}(t)=V_{\text {final }}+\left(V_{\text {initial }}-V_{\text {final }}\right) e^{-\frac{t}{\tau}}$
Voltage of charging capacitor over time with no initial value $\left(V_{\text {initial }}=0\right.$ and $\left.V_{\text {fianl }}=\mathrm{E}\right)$	$v_{c}(t)=E+(0-E) e^{-\frac{t}{\tau}}=$
$=E\left(1-e^{\left.-\frac{t}{\tau}\right)}\right.$	

R-C Circuit

	$v_{c}=\mathrm{E}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$	$i_{c}=\frac{\mathrm{E}}{\mathrm{R}} \mathrm{e}^{-\mathrm{t} / \tau}$
$\mathrm{t}=0$	$v_{c}=\mathrm{E}\left(1-\mathrm{e}^{\mathrm{e}}\right)=\mathrm{E}(1-1)=0 \mathrm{~V}$	$i_{c}=(\mathrm{E} / \mathrm{R})^{*} \mathrm{e}^{0}=(\mathrm{E} / \mathrm{R})^{*} 1=\mathrm{E} / \mathrm{R}$
$\mathrm{t}=\tau$	$v_{c}=\mathrm{E}\left(1-\mathrm{e}^{-\tau / \tau}\right)=\mathrm{E}\left(1-\mathrm{e}^{-1}\right)=$ $\mathrm{EE}(1-0.368)=0.632 \mathrm{E}$	$i_{c}=(\mathrm{E} / \mathrm{R})^{*} \mathrm{e}^{-\tau / \tau}=0.368^{*}(\mathrm{E} / \mathrm{R})$
$\mathrm{t}=2 \tau$	$v_{c}=\mathrm{E}\left(1-\mathrm{e}^{-2 \tau / \tau}\right)=\mathrm{E}\left(1-\mathrm{e}^{-2}\right)=$ $=\mathrm{E}(1-0.135)=0.865 \mathrm{E}$	$i_{c}=(\mathrm{E} / \mathrm{R})^{*} \mathrm{e}^{-2 / \tau}=0.135^{*}(\mathrm{E} / \mathrm{R})$
$\mathrm{t}=5 \tau$	$v_{c}=\mathrm{E}\left(1-\mathrm{e}^{-5 / \tau}\right)=\mathrm{E}\left(1-\mathrm{e}^{-5}\right)=$ $=\mathrm{E}(1-0.007)=0.993 \mathrm{E} \approx \mathrm{E}$	$i_{c}=(\mathrm{E} / \mathrm{R})^{*} e^{-5 \tau / \tau}=0.007^{*}(\mathrm{E} / \mathrm{R}) \approx 0$

Example:

Find voltage of capacitor 50 ms after the connection if $E=20 \mathrm{~V}$, $C=4 \mu F$ and $R=5 k \Omega$

Determine time \boldsymbol{T}

$$
\begin{aligned}
& \tau=R C=4 \mu \mathrm{~F} * 5 \mathrm{k} \Omega=0.02 \mathrm{~s} \\
& \text { Determine } v_{c} \\
& v_{c}(t)=V_{\text {final }}+\left(V_{\text {initial }}-V_{\text {final }}\right) e^{-\frac{t}{\tau}} \\
& v_{c}(t)=20+(0-20) e^{-\frac{t}{\tau}} \\
& v_{c}(0.05)=20-20 e^{-\frac{0.05}{0.02}} \\
& v_{c}(0.05)=20-20 e^{-2.5} \\
& v_{c}(0.05)=20-1.64 \\
& v_{c}(0.05)=18.36 \mathrm{~V}
\end{aligned}
$$

Capacitors in Series and Parallel

$$
\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\frac{1}{\mathrm{C}_{4}}+\ldots+\frac{1}{\mathrm{C}_{n}}
$$

$$
\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}+\ldots+\mathrm{C}_{\mathrm{n}}
$$

Inductor (spole)

- Current flowing through a conductor generates a magnetic field
- The magnetic field starts out small, as current yet flows in only part of the conductor. Once steady current is established, magnetic field quantity will be stable
- Magnetic field stores charge
- Faraday's law of induction says that we should have very long conductor as a coil for best result. A magnet inside the coil will help. Such element is called inductor
- Inductance L
- Used for signal filtering, sensors, dynamics
- Two inductors form a transformer

R-L curcuit

Time constant $\tau=\frac{L}{R}$
Current of an inductor over time with an initial value $I_{\text {initial }}$

$$
\begin{aligned}
& i_{L}(t)=I_{\text {final }}+\left(I_{\text {initial }}-I_{\text {final }}\right) e^{-\frac{t}{\tau}} \\
& I_{\text {final }}=\frac{E}{R_{\text {Total }}}
\end{aligned}
$$

Inductors in Series and Parallel

$$
\frac{1}{L}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}
$$

Inductor and Magnetic Field

- Movement of electrons causes magnetic field
- BECAUSE electrons and magnetic field are friends
- SO moving magnetic field causes movement of electrons

Transformer

Magnet Produces Electricity

One Phase Electricity

Three Phase Electricity

Suggested reading

Introductory Circuit Analysis
-Kap 10: 10.2-10.4, 10.5-10.9, 10.11-10.13
-Kap 11: 11.2-11.3, 11.4-11.8, 11.9-11.12
-Kap 23: 23.1-23.3
-Kap 24: 2

Suggested exercises

-Capacitors (kapital 10): 19, 21, 25, 29, 37, 42, 43
-Inductors (kapital 11): 11, 13, 15, 17, 21, 23, 24

