

HE1027 Electrical Principals

Lecture 2: Series-Parallel Circuits Exercises

Series Circuits – Kirchhoff's Voltage Law

 The sum of all potential rises (sources) and drops (consumptions) around a closed path is zero

$$E+V_1+V_2+V_3=0$$
 (V₁ V₂ V₃ has negative values)

$$E=V_1+V_2+V_3$$
 (V₁ V₂ V₃ has positive values)

$$\Sigma E = \Sigma \Lambda$$

What is V_3 voltage?

$$E = V_1 + V_2 + V_3 + V_4$$
 or $E - V_1 - V_2 - V_3 - V_4 = 0$
 $50 = 10 + 10 + V_3 + 10$
 $V_3 = 50 - 10 - 10 - 10 = 20V$

Determine a current if R_3 is 40Ω ?

$$I = \frac{V_3}{R_3} = \frac{20}{40} = 0.5A$$

Blocks represent mixtures of components. Determine the unknown voltage

$$60 - 40 - V_x + 30 = 0$$
$$-V_x = -60 + 40 - 30 = -50$$
$$V_x = 50 \text{ V}$$

Determine the unknown voltage and polarity

Kirchhoff's Current Law

 The sum of currents entering and leaving a junction or region of network is zero

$$-I_1+I_2-I_3-I_4+I_5=0$$

Determine the current in points a, b, c, d and e

Prom previous lecture we know that

$$I_a = 2,53 A$$

$$I_b=2,4A$$

$$I_{c}=0,11A$$

$$I_{d} = 0.02A$$

$$I_c = I_a - I_b = 0.13A$$

or

$$I_c = I_d + I_e = 0,13A$$

Series-Parallel Circuits

- Most of circuits are combination of series connections and parallel connections
- To solve it we can use reduce and return approach:
 - find and solve elements that are just series or just parallel
 - (mentally) redraw these elements as one
 - repeat until all is reduced to one element
 - now redraw circuit back to original based on found values

Find current I₃

$$R_T = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3} = 2 + \frac{12 \cdot 6}{12 + 6} = 2 + 4 = 6k\Omega$$

$$I_T = \frac{54}{6000} = 9mA$$

$$V_1 = I_T \cdot R_1 = 9mA \cdot 2k\Omega = 18V$$

$$V_3 = V_2 = E - V_1 = 54 - 18 = 36V$$

$$I_3 = \frac{V_3}{R_2} = 6mA$$

Parallel R_a//R_b Serial R_a+R_b

$$R_T = (((R_1//R_2) + R_3)//R_5 + R_7)//R_6 + R_4$$

Find R_{total}

 $R_T = R_1$ R_2 and R_3 are open circuit

 $R_T=0$ R_4 and R_5 are closed circuit

 $R_T=0$ R_{11} and R_{12} are closed circuit

$$R_T = (R_8 + R_9) / / R_{10}$$

$$R_T = R_1 + R_7 + (R_8 + R_9) / / R_{10} + R_6$$

Find resistance between a and b

$$R_T = (20+60)//(30+40)$$

Find resistance between a and b

$$R_T = 20//30 + 60//40$$

Find resistance between a and b

?

Delta-Wye transformation

$$Z_1 = \frac{Z_{12} \cdot Z_{13}}{Z_{12} + Z_{13} + Z_{23}}$$

$$Z_2 = \frac{Z_{12} \cdot Z_{23}}{Z_{12} + Z_{13} + Z_{23}}$$

$$Z_3 = \frac{Z_{13} \cdot Z_{23}}{Z_{12} + Z_{13} + Z_{23}}$$

Triangel – Stjärntransformation/ D - Y

$$Z_{12} = Z_1 \cdot Z_2 \sum_{i=1}^{3} \frac{1}{Z_i}$$

$$Z_{13} = Z_1 \cdot Z_3 \sum_{i=1}^{3} \frac{1}{Z_i}$$

$$Z_{23} = Z_2 \cdot Z_3 \sum_{i=1}^{3} \frac{1}{Z_i}$$

Stjärn – Triangeltransformation/ Y - D

Find resistance between a and b

Transforming top triangle into star: $R_1 = \frac{R_{12} \cdot R_{13}}{R_{12} + R_{13} + R_{23}}$

$$R_a = \frac{20 \cdot 30}{20 + 30 + 4} = 11\Omega$$

$$R_b = \frac{20 \cdot 4}{20 + 30 + 4} = 1,482\Omega$$

$$R_c = \frac{30 \cdot 4}{20 + 30 + 4} = 2,222\Omega$$

$$R_T = 11 + (1,482 + 60) / / (2,222 + 40)$$

Measuring tools

• Based on series or parallel – how should measuring tools be connected?

Internal resistance

- A voltmeter needs some current to flow to measure
- It should not change the amount of current going through the element between those two points
- The less current is better to avoid affecting the circuit
- Digital voltmeters today have an input resistance of 10 Megohms or more
- Wrong readings in circuits with high resistance

- Ammeters tend to influence the amount of current in the circuits they're connected to
- The ideal ammeter has zero internal resistance, so as to drop as little voltage as possible
- Wrong readings in circuits with low resistance

Electricity Sources in Circuits

Dependent Source

The source output value depends upon the voltage or current at some other part of the circuit

Dependent voltage source

Dependent current source

Voltage Controlled Voltage Source

$$V=a*V_b$$

Current Controlled Voltage Source

$$V=a*I_b$$

Current Controlled
Current Source

Voltage Controlled Current Source

Determine type and voltage of the dependent source

Current Controlled Voltage Source (CCVS)

$$E = 2*2=4V$$

Source Conversion

Source Conversion

$$I = \frac{V}{a\Omega}$$
$$V = I \cdot a\Omega$$

Convert to current source

Internal resistance is the same for both circuit, so $x=2\Omega$

Current is equal to voltage source divided by internal resistance, so I=6/2=3A

Polarity of current source matches the polarity of voltage source

Suggested reading

Introductory Circuit Analysis

- -Kap 5: **5.6 5.7**, 5.8 5.12, 5.14
- -Kap 6: **6.5 6.7**, 6.8 6.9, 6.12
- -Kap 7: **7.2 7.8**
- -Kap 8: 8:9

The book does not have a good material about depended sources

 Kretsanalysis by Bill Karlström p.19-20 (see last page of the slides)

Suggested exercises

• Kap 5: 25, 27

• Kap 6: 27, 31

• Kap 7: 3, 9, 11, 13, 23

• Kap 8: 65, 69

Beroende energikällor

I beroende energikällor är källströmmen eller källspänningen beroende av andra storheter i kretsen.

Beroende energikällor används för att modellera transistorer och förstärkare.

Fig 2.10 Beroende energikällor

VCVS Spänningsberoende spänningskälla. Dess källspänning

beror av en spänning u_0 någon annanstans i kretsen

oberoende av strömmen i.

Konstanten *k* är enhetslös.

CCVS Strömberoende spänningskälla. Dess källspänning beror

av en ström $\it i_0$ någon annanstans i kretsen oberoende av

strömmen i.

Konstanten r har enheten Ω .

CCCS Strömberoende strömkälla. Dess källström beror av en

ström $\it i_0$ någon annanstans i kretsen oberoende av

spänningenu.

Konstanten k är enhetslös.

VCCS

Spänningsberoende strömkälla. Dess källström beror av en spänning u_0 någon annanstans i kretsen oberoende av spänningen u.

Konstanten g har enheten $S = siemens = \Omega^{-1}$.

Exempel 2.7

Bestäm spänningen u_2 i kretsen nedan (enkel transistormodell).

Lösning

Spänningen u_1 över 800Ω -resistorn är $50 \mathrm{mV}$. Detta ger

$$i_1 = \frac{50 \cdot 10^{-3}}{800} = 62,5 \mu A$$
 (2.34) (strömmen i_1 in vid plus).

Detta ger

$$i_2 = 120 \cdot i_1 = 120 \cdot 62, 5 \cdot 10^{-6} = 7,5 \text{mA}$$
 (2.35)

så att

$$u_2 = -1.2 \cdot 10^3 \cdot i_2 = -1.2 \cdot 10^3 \cdot 7.5 \cdot 10^{-3} = -9V$$
 (2.36)

Observera minustecknet! Detta kommer av att strömmens referensriktning är in mot minustecknet!!