HE1027 Electrical Principals

Lecture 2: Series-Parallel Circuits Exercises

Series Circuits - Kirchhoff's Voltage Law

- The sum of all potential rises (sources) and drops (consumptions) around a closed path is zero
$\mathrm{E}+\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=0 \quad\left(\mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}\right.$ has negative values $)$
$\mathrm{E}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
($\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}$ has positive values)
$\Sigma \mathrm{E}=\Sigma \mathrm{V}$

Example

$$
\begin{aligned}
& \text { What is } V_{3} \text { voltage? } \\
& E=V_{1}+V_{2}+V_{3}+V_{4} \text { or } E-V_{1}-V_{2}-V_{3}-V_{4}=0 \\
& 50=10+10+V_{3}+10
\end{aligned}
$$

$$
V_{3}=50-10-10-10=20 \mathrm{~V}
$$

Determine a current if R_{3} is 40Ω ?

$$
I=\frac{V_{3}}{R_{3}}=\frac{20}{40}=0,5 \mathrm{~A}
$$

Example

Blocks represent mixtures of components. Determine the unknown voltage

$$
\begin{gathered}
60-40-V_{x}+30=0 \\
-V_{x}=-60+40-30=-50 \\
V_{x}=50 \mathrm{~V}
\end{gathered}
$$

Example

Determine the unknown voltage and polarity

Kirchhoff's Current Law

- The sum of currents entering and leaving a junction or region of network is zero
$\xrightarrow{\xrightarrow{I_{1}=10 A} \xrightarrow{I_{2}=10 A}} \quad \begin{array}{ll}I_{1}+I_{2}=0 \\ I_{1}-I_{2}=0\end{array} \quad \begin{aligned} & \text { (if } I_{2} \text { is negative) } \\ & \text { (if } I_{2} \text { is positive) }\end{aligned}$

$$
-I_{1}+I_{2}-I_{3}-I_{4}+I_{5}=0
$$

Example

Determine the current in points a, b, c, d and e
Prom previous lecture we know that
$I_{a}=2,53 \mathrm{~A}$
$I_{c}=I_{a}-I_{b}=0,13 \mathrm{~A}$
$\mathrm{I}_{\mathrm{b}}=2,4 \mathrm{~A}$
$\mathrm{I}_{\mathrm{c}}=0,11 \mathrm{~A}$
or
$\mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{d}}+\mathrm{I}_{\mathrm{e}}=0,13 \mathrm{~A}$
$I_{d}=0,02 \mathrm{~A}$

Series-Parallel Circuits

- Most of circuits are combination of series connections and parallel connections
- To solve it we can use reduce and return approach:
- find and solve elements that are just series or just parallel
- (mentally) redraw these elements as one
- repeat until all is reduced to one element
- now redraw circuit back to original based on found values

Find current I_{3}

$$
\begin{gathered}
R_{T}=R_{1}+\frac{R_{2} \cdot R_{3}}{R_{2}+R_{3}}=2+\frac{12 \cdot 6}{12+6}=2+4=6 \mathrm{k} \Omega \\
I_{T}=\frac{54}{6000}=9 \mathrm{~mA} \\
V_{1}=I_{T} \cdot R_{1}=9 \mathrm{~mA} \cdot 2 \mathrm{k} \Omega=18 \mathrm{~V} \\
V_{3}=V_{2}=E-V_{1}=54-18=36 \mathrm{~V} \\
I_{3}=\frac{V_{3}}{R_{3}}=6 \mathrm{~mA}
\end{gathered}
$$

Example 2

Find $R_{\text {total }}$

$$
\mathrm{R}_{\mathrm{T}}=\left(\left(\left(\mathrm{R}_{1} / / \mathrm{R}_{2}\right)+\mathrm{R}_{3}\right) / / \mathrm{R}_{5}+\mathrm{R}_{7}\right) / / \mathrm{R}_{6}+\mathrm{R}_{4}
$$

Example 3

Find $R_{\text {total }}$

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{7}+\left(\mathrm{R}_{8}+\mathrm{R}_{9}\right) / / \mathrm{R}_{10}+\mathrm{R}_{6}
$$

Example 4

Find resistance between a and b

$$
\mathrm{R}_{\mathrm{T}}=(20+60) / /(30+40)
$$

Example 5

Find resistance between a and b

Example 6

Find resistance between a and b

Delta-Wye transformation

$Z_{1}=\frac{Z_{12} \cdot Z_{13}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{2}=\frac{Z_{12} \cdot Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{3}=\frac{Z_{13} \cdot Z_{23}}{Z_{12}+Z_{13}+Z_{23}}$
$Z_{12}=Z_{1} \cdot Z_{2} \sum_{i=1}^{3} \frac{1}{Z_{i}}$
$Z_{13}=Z_{1} \cdot Z_{3} \sum_{i=1}^{3} \frac{1}{Z_{i}}$
$Z_{23}=Z_{2} \cdot Z_{3} \sum_{i=1}^{3} \frac{1}{Z_{i}}$

Triangel - Stjärntransformation/D-Y

Stjärn - Triangeltransformation/ Y - D

Example 6

Find resistance between a and b
Transforming top triangle into star: $R_{1}=\frac{R_{12} \cdot R_{13}}{R_{12}+R_{13}+R_{23}}$

$$
\begin{aligned}
& R_{a}=\frac{20 \cdot 30}{20+30+4}=11 \Omega \\
& R_{b}=\frac{20 \cdot 4}{20+30+4}=1,482 \Omega \\
& R_{c}=\frac{30 \cdot 4}{20+30+4}=2,222 \Omega
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{T}}=11+(1,482+60) / /(2,222+40)
$$

Measuring tools

- Based on series or parallel - how should measuring tools be connected?

Internal resistance

- A voltmeter needs some current to flow to measure
- It should not change the amount of current going through the element between those two points
- The less current is better to avoid affecting the circuit
- Digital voltmeters today have an input resistance of 10 Megohms or more
- Wrong readings in circuits with high resistance
- Ammeters tend to influence the amount of current in the circuits they're connected to
- The ideal ammeter has zero internal resistance, so as to drop as little voltage as possible
- Wrong readings in circuits with low resistance

Electricity Sources in Circuits

Dependent Source

The source output value depends upon the voltage or current at some other part of the circuit

Dependent voltage source

Voltage Controlled Current Controlled Voltage Source

$$
V=a * V_{b}
$$

$V=\left.a *\right|_{b}$

Dependent current source

Current Controlled Current Source
$1=a \|_{b}$

Example

Determine type and voltage of the dependent source

Current Controlled Voltage Source (CCVS)

$$
E=2^{*} 2=4 V
$$

Source Conversion

reality (due internal resistance)

Source Conversion

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{V}}{\mathrm{a} \Omega} \\
\mathrm{~V} & =\mathbf{I} \cdot \mathbf{a} \Omega
\end{aligned}
$$

Example Convert to current source

Internal resistance is the same for both circuit, so $x=2 \Omega$
Current is equal to voltage source divided by internal resistance, so $I=6 / 2=3 \mathrm{~A}$
Polarity of current source matches the polarity of voltage source

Suggested reading

Introductory Circuit Analysis

-Kap 5: 5.6-5.7, 5.8-5.12, 5.14
-Kap 6: 6.5-6.7, 6.8-6.9, 6.12
-Kap 7: 7.2-7.8
-Kap 8: 8:9

The book does not have a good material about depended sources
-Kretsanalysis by Bill Karlström p.19-20 (see last page of the slides)

Suggested exercises

- Kap 5: 25, 27
- Kap 6: 27, 31
- Kap 7: 3, 9, 11, 13, 23
- Kap 8: 65, 69

Beroende energikällor

I beroende energikällor är källströmmen eller källspänningen beroende av andra storheter i kretsen.
Beroende energikällor används för att modellera transistorer och förstärkare.

Fig 2.10 Beroende energikällor
VCVS Spänningsberoende spänningskälla. Dess källspänning beror av en spänning u_{0} någon annanstans i kretsen oberoende av strömmen i. Konstanten k är enhetslös.
CCVS

CCCS Strömberoende spänningskälla. Dess källspänning beror av en ström i_{0} någon annanstans i kretsen oberoende av strömmen i.
Konstanten r har enheten Ω.
Strömberoende strömkälla. Dess källström beror av en ström i_{0} någon annanstans i kretsen oberoende $a v$ spänningen u.
Konstanten k är enhetslös.

VCCS

Exempel 2.7
Bestäm spänningen u_{2} i kretsen nedan (enkel transistormodell).

Lösning

Spänningen u_{1} över 800Ω-resistorn är 50 mV . Detta ger $i_{1}=\frac{50 \cdot 10^{-3}}{800}=62,5 \mu \mathrm{~A}(2.34) \quad$ (strömmen i_{1} in vid plus).
Detta ger
$i_{2}=120 \cdot i_{1}=120 \cdot 62,5 \cdot 10^{-6}=7,5 \mathrm{~mA}$
så att
$u_{2}=-1,2 \cdot 10^{3} \cdot i_{2}=-1,2 \cdot 10^{3} \cdot 7,5 \cdot 10^{-3}=\underline{\underline{-9 V}}$
Observera minustecknet! Detta kommer av att strömmens referensriktning är in mot minustecknet!!

