HE1027 Electrical Principals

Lecture 1: Basic concepts

Course Structure

- 10 lectures (digital)
- 7 exercises (physical)
- 6 online quizzes (optional)
- 5 labs (physical)
- book times in the calendar

- written exam (physical)
- June 3

Maksims Kornevs (kornevs@kth.se)

What is ELECTRICITY?

Electricity is a form of energy that can be changed into other forms

Two Types of Electricity

Static electricity produced when some materials are rubbed together

Current electricity is caused by electrons that move through metal

Where does Electricity come from?

Power Stations

Supply a lot of energy

Power generators
Similar to power stations

Electric batteries

Supply a little electricity Portable Safe

Electrical Units

- Basic units of measurement
- Current (amperes A)
- Voltage (volts V)
- Resistance (ohms Ω)

Current

- To make an electrical appliance work, electricity must flow through it
- The flow of electricity is called an electric current
- An electric current is the rate of flow of electric charges in a circuit
- The path along which the electric current moves is called the electric circuit

Electric Charge and Current

- Atoms have positive protons and negative electrons, where $\mathrm{Nr}_{\text {protons }}=\mathrm{Nr}_{\text {electrons }}$
- Some electrons can leave their atoms and flow without any specific direction

ITostam ©lectron.

To way,
Are yon Positioos

Electric Charge and Current

- Atoms have positive protons and negative electrons, where $\mathrm{Nr}_{\text {protons }}=\mathrm{Nr}_{\text {electrons }}$
- Some electrons can leave their atoms and flow without any specific direction
- Charge (Q) is measured in coulombs (C)

1 coulomb = 6242000000000000000 electrons

- When wire is connected to an electric source, electrons in the wire start to move from negative terminal to positive. This flow is electric current

- Iostan બlectron.

No Way.
ATO yOT POSk

Electric Charge and Current

- Atoms have positive protons and negative electrons, where $\mathrm{Nr}_{\text {protons }}=\mathrm{Nr}_{\text {electrons }}$
- Some electrons can leave their atoms and flow without any specific direction
- Charge (Q) is measured in coulombs (C)

1 coulomb = 6242000000000000000 electrons

- When wire is connected to an electric source, electrons in the wire start to move from negative terminal to positive. This flow is electric current
- Electric current (I) is measured in amperes (A) 1 ampere $=1$ coulomb / 1 second

ITOSt an olectron.

No way.
ATP you Posithoos

Example 1

- The charge in point A is 0.16 C
- The charge flows every 64 ms .
- What is a current in that point?

$$
I=\frac{Q}{t}=\frac{0,16}{0,064}=2,5 \mathrm{Al}
$$

Example 2

- The current is 5 mA
- How long it will take for $4^{*} 10^{16}$ electrons to pass?

$$
\begin{aligned}
& Q=\frac{4 \cdot 10^{16}}{6.242 \cdot 10^{18}}=6.41 \cdot 10^{-3} \mathrm{C} \\
& t=\frac{Q}{I}=\frac{6.41 \cdot 10^{-3}}{5 \cdot 10^{-3}}=1,28 \mathrm{~s}
\end{aligned}
$$

Current Flow

- Electron flow goes from negative to positive

- However, in analysis is used convention flow
- Convention flow goes from highest to lowest (from positive to negative)
- Similar high and low we can determine for all elements by determine by looking how element changes potential

Voltage

- An electric cell gives energy to the electrons and pushes them round a circuit. Voltage is a measure of how much energy the electrons receive
- Voltage $(\mathrm{V})=\frac{\operatorname{energy}(\mathrm{W})}{\text { charge }(\mathrm{Q})}$
- Different voltages are supplied by different cells and batteries

Resistance: Conductors and Insulators

- When an electric current flows through a circuit, there will be some resistance that opposes it

Low resistance

Good conductors

Superconductor $\rho=0$
Silver $\rho=1.59 \times 10^{-8}$
Copper $\rho=1.68 \times 10^{-8}$
Gold $\rho=2.44 \times 10^{-8}$
Aluminium $\rho=2.65 \times 10^{-8}$
Iron $\rho=9.7 \times 10^{-8}$

High resistance
Poor conductors

Superinsulators $\rho=\infty$
Teflon $\rho=10^{24}$
Dry wood $\rho=10^{15}$
Air $\rho=10^{12}$
Rubber $\rho=10^{13}$
Diamond $\rho=10^{12}$

$$
\text { Resistance }(R)=\frac{\text { resistivity }(\rho)^{*} \text { length }(L)}{\text { cross sectional area }(A)}
$$

Resistors

- Resistors are electrical components that are specially made to have a certain resistance
- Resistors are connected in a circuit to resist the current flow
- Resistors can be:
- fixed resistors (only one resistance value)
- variable resistors (resistors can be adjusted to change the resistance)

Resistor Color-coding

- Thin-film resistors use colour coding based on 4,5 or 6 bands
- If 4 bands: 1 st digit, 2 nd digit, multiplier, tolerance
- If 5 bands: 1 st digit, 2nd digit, 3rd digit, multiplier, tolerance
- If 6 bands: 1st digit, 2nd digit, 3rd digit, multiplier, tolerance, temp coof

$100 \Omega \pm 5 \%$

Drawing Circuits

\qquad wire

inductor

Voltage source

earth

power supply \qquad switch

capacitor
resistor
voltmeter

Examples

Ohms Law

- Current through a conductor between two points is directly proportional to the voltage across the two points
- Current $(\mathrm{I})=\frac{\text { Voltage (V) }}{\text { Resistance (R) }}$
- $I=\frac{V}{R} \quad V=I^{*} R$
$R=\frac{V}{1}$

- V is applied to voltage drops
- E is applied to voltage sources

$$
V=E
$$

Example 1

What is a resistance of a light bulb if current is 500 mA and voltage is 220 V ?

$$
I=\frac{V}{R} \rightarrow R=\frac{V}{I}=\frac{220}{0,5}=440 \Omega
$$

Example 2

- What is a current?

$$
I=\frac{V}{R}=\frac{1,5}{68 \cdot 10}=\frac{1,5}{680}=2,2 \mathrm{~mA}
$$

Power

- Power shows how much work (energy conversion) can be done in a specific amount of time
- Power $(P)=\frac{\text { energy }(W)}{\text { time }(t)}$

Different Types of Connection

Series Connection
Parallel Connection

Series Circuits

- The total resistance of a series configuration is a sum of the resistance levels

$$
R_{T}=R_{1}+R_{2}+R_{3}
$$

- The current is the same at every point in a series circuit

$$
\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3} \quad \mathrm{I}_{\mathrm{T}}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{T}}}
$$

- Voltage is calculated for each element

Example

Determine the voltage across each resister and indicate their polarity

$$
\begin{aligned}
& R_{\text {Total }}=1 \Omega+2 \Omega+3 \Omega+4 \Omega=10 \Omega \\
& I_{\text {Total }}=I_{1}=I_{2}=I_{3}=I_{4}=\frac{E}{R_{\text {Total }}}=\frac{20}{10}=2 \mathrm{~A} \\
& V_{1}=R_{1} \cdot I_{1}=2 \mathrm{~V} \quad V_{3}=R_{3} \cdot I_{3}=6 \mathrm{~V} \\
& V_{2}=R_{2} \cdot I_{2}=4 \mathrm{~V} \quad V_{4}=R_{4} \cdot I_{4}=8 \mathrm{~V}
\end{aligned}
$$

Parallel Circuits

$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
Voltage is the same for all branches

Current is calculated for each element

For two parallel resistors: $R_{T}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}$

Example

Determine the voltage through each branch
Since it is parallel connection, $V_{1}=V_{2}=V_{3}=V_{\text {Tota }}=24 \mathrm{v}$
Find the total resistance
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{10}+\frac{1}{220}+\frac{1}{1200}=0,10538 \quad R_{T}=\frac{1}{0,10538}=9,49 \Omega$
Calculate the source current

$$
I=\frac{V}{R_{T}}=\frac{24}{9,49}=2,53 A
$$

Determine the current through each branch
$I_{1}=\frac{V}{R_{1}}=\frac{24}{10}=2,4 \mathrm{~A}$

$$
I_{2}=\frac{V}{R_{2}}=\frac{24}{220}=0,11 \mathrm{~A}
$$

$$
I_{3}=\frac{V}{R_{3}}=\frac{24}{1200}=0,02 \mathrm{~A}
$$

Suggested reading

Introductory Circuit Analysis

-Kap 1: 1.6-1.8
-Kap 2: 2.2-2.12, 2.2-2.8
-Kap 3: 3.4, 3.5-3.8, 3.9
-Kap 4: 4.2-4.5
-Kap 5: 5.1-5.5
-Kap 6: 6.2-6.4

Suggested exercises

- Kap 1: 30-33
- Kap 2: 8-11, 14-17
- Kap 3: 34-35, 44
- Kap 4: 1-12, 24-28
- Kap 5: 3, 7, 10
- Kap 6: 7, 13, 15, 17

