
Lecture 6 (part 1)
Refinement in Event-B

Refinement

• Refinement is a process that is used describe any or all of the following
changes to a model:

• extended functionality: we add more functionality to the model, perhaps
modelling the requirements for a system in layers;

• more detail: we give a finer-grained model of the events. This is often described
as moving from the abstract to the concrete (from “what” to “how”)

• changing state model: we change the way that the state is modelled, but also
describe how the new state models the old state (data refinement)

Correct-by-construction development: formal
meaning

2022-04-08 3

• In all cases of refinement, the behaviour of the refined machine must be
consistent with the behaviour of the machine being refined (more abstract
machine).

• Observe consistent does not mean equivalent:

– the behaviour of the refined machine does not have to be the same, but the behaviour
must not contradict the behaviour of the machine being refined.

– e.g., machines may be nondeterministic and the refined machine may remove some of
the nondeterminism.

Refinement machine: refined state (1/2)

2022-04-08 4

• The refinement machine consists of refined state and refined events

• A refined state is logically a new state.

• The refined state must contain a refinement relation that expresses how the
refined state models the state being refined.

• The refined state may contain variables that are syntactically and semantically
equivalent to variables in the state of the machine being refined.

• In that case, the new and old variables are implicitly related by an equivalence
relation.

Refinement machine: refined and new events
(2/2)

2022-04-08 5

• Refined events logically refine the events of the refined machine.

• The refined events are considered to simulate the behaviour of the events
being refined, where the effects of the refined events are interpreted through
the refinement relation.

• New events add new functionality to the model.

• The new events must not add behaviour that is inconsistent with the behaviour
of the refined machine.

Refinement relation

2022-04-08 6

• The refinement relation is expressed explicitly or implicitly in the invariant of a
refinement,

• It relates the state of the machine being refined to the state of the refinement
machine.

• Refinement consistency means that any behaviour of a refined event must be
acceptable behaviour of the unrefined event in the unrefined model.

• An informal example: if in a restaurant you asked for fish or vegetables as the
main course and you are given fish then it as consistent with your request (a
valid refinement). But if you are given meat then it is not acceptable, i.e., not a
valid refinement

Rules of refinement

2022-04-08 7

• In the refinement we can:

• strengthen guards and invariants:

– guards and invariants can be strengthened, provided overall functionality is not reduced
(no new deadlocks are introduced);

• nondeterminism can be reduced:

– where a model offers choice, then the choice can be reduced (but not increased) in the
refinement;

• the state may be augmented by an orthogonal state:

– new state variables, whose values do not affect the existing state, may be added.

Once again about events in refinement

2022-04-08 8

• What might happen during refinement:

• a single event may be refined by multiple events, or

• vice versa multiple events may be refined by a single event.

• Refinement may introduce new events.

• Important: The new events must not change variables inherited from the state
of the refined machine.

• This is a restriction that recognises that a machine state can be modified only
by the events of that machine, or their refinements.

• Our informal restaurant example: in the refinement you can add one or several
other courses, i.e. starter or/and desert but you cannot change the alternatives
that you had for the main course

Example of refinement: coffee club

2022-04-08 9

• We start by specifying functionality of a simple piggybank
system for collecting and spending money for coffee.

Requirements document:

REQ1: a money bank for storing and reclaiming finite, non-
negative funds for a coffee club;

REQ2: an operation for adding money to the money bank;

REQ3: an operation for removing money from the money bank;
cannot remove more than money bank

2022-04-08 10

MACHINE CoffeeClub

VARIABLES piggybank // Denotes money bank for coffee club

INVARIANTS

inv1: piggybank ∊ NAT // REG1: piggybank should be non-negative

EVENTS

INITIALISATION ≜

then

act1: piggybank:= 0 // But could also initialize to any natural number

end

CoffeeClub Abstract Specification (1/2)

CoffeeClub Abstract Specification (2/2)

2022-04-08 11

FeedBank ≜ // REQ2: adding money to piggybank.
any amount

where

grd1: amount ∊ NAT1

then

act1: piggybank := piggybank+amount

end

RobBank ≜ // REQ3: removing money from piggybank.
any amount

where

grd1: amount ∊ 1..piggybank

then

act1: piggybank := piggybank-amount

end

Proof obligations

2022-04-08 12

Sequent representation:

hypothesis ⊦ goal

Proof obligations are the checks showing that the specification is consistent with
formal constraints of the model

hypothesis ⊦ goal means that the truth of the hypotheses leads to the truth of the
goal.

Note:

1. If any of the hypotheses is false (⊥) then any goal is trivially established.

2. If the hypotheses are identically true (⊤) then the hypotheses will be omitted.

Discharging POs

2022-04-08 13

• Important to understand that the consequent should be provable from the given
hypotheses;

• there is nothing else in the form of a hypothesis that should be required.

• If the PO cannot be discharged then there are many cases that must be
considered, of which

• the invariants are too strong/weak

• the guards are too weak/strong;

• the actions are inappropriate/incomplete

Discharging POs not the goal in itself

2022-04-08 14

• Working with Pos is not primarily about discharging the proof obligations, it’s
about determining whether the model is consistent with the requirements and
internally consistent.

• Observe that the proof obligations might be discharged, but the model may not
be what is required.

Refinement of the CoffeeClub

2022-04-08 15

• Abstract specification of CoffeeClub is very simple:

• piggybank models an amount of money

• Events FeedBank and RobBank describe adding to or taking from amount
modelled by piggybank.

• We will now model behaviour that describes club-like behaviour for members
who want to be able to purchase cups of coffee.

Additional requirements for coffee club

2022-04-08 16

• The new requirements are:

REQ4: a facility for members to join the coffee club; each member has a distinct
membership id;

REQ5: members have an account that cannot go into debt;

REQ6: an operation that enables a member to add money to their account;

REQ7: money added to a members account is also added to the club money bank;

REQ8: an operation that sets the price for a cup of coffee;

REQ9: an operation that enables a member to buy a cup of coffee; the member’s
account is reduced by the cost of a cup of coffee;

Refinement: new variables and events

2022-04-08 17

• We will introduce variables members, accounts and coffeeprice

• New events that correspond to

• a new member joining the club: each member of the club is represented by a
unique identifier that is arbitrarily chosen from an abstract set MEMBERS;

• a member adding money to their account: each member has an account, to
which they can add “money”;

• a member buying a cup of coffee: there will be a variable, coffeeprice,
representing the cost of a cup of coffee, and each member can buy a cup of
coffee provided they have enough money in their account.

• The value of all money added to accounts is added to piggybank (connection to
abtract state space)

Refinement: defining context

2022-04-08 18

Refinement: defining new variables

2022-04-08 19

Refinement: initialisation

2022-04-08 20

• In extended mode, only the new parameters, guards and actions are displayed,
that is, only the parts of an event that extend the event being refined.

Refinement: new events for setting price and
adding member

2022-04-08 21

Refinement: new events for adding money and
buying coffee

2022-04-08 22

Refinement: “old events”

2022-04-08 23

“Old” events remain unchanged. In the extended mode they are “hidden”

Unproved PO: why?

2022-04-08 24

• Why cannot we prove it?

Unproved PO: why?

2022-04-08 25

• Why cannot we prove it?

• EQL PO requires a proof that piggybank is not changed, but of course,
piggybank := piggybank+ amount must change the value of the variable
piggybank, unless amount is 0.

• Contribute appears in the refinement as a new event, but here it is changing
the value of the variable piggybank, which is part of the state of CoffeeClub, the
machine being refined.

• To preserve consistency, any event of a refinement that modifies the state of
the machine being refined must itself be a refinement of one or more events of
the machine being refined.

Corrected event:

2022-04-08 26

• The event FeedBank of CoffeeClub changes the value of the variable
piggybank in a similar way to Contribute, thus Contribute must be seen as a
refinement of FeedBank

Lesson learnt

2022-04-08 27

• Usually the presence of undischarged EQL POs will probably indicate a bad
refinement.

• Check that your working with the “old” variables is consistent with your abstract
specification.

Types of POs

2022-04-08 28

• You are all familiar with INV type of POs: proving that invariant is preserved by
the initialisation and events

• Now we have learnt about EQL POs: demonstrating consistency of refinement
wrt more abstract specification

• WD: well-defined Some expressions, especially function applications, may not
be defined everywhere. For example, f(x) is only defined if x is in the domain of
f, ie x ∊ dom(f).

• FIS: feasibility. Specifying a property with a predicate does not carry with it the
promise that there exist solutions that satisfy the predicate.

• e.g. x + 1 = x-1 cannot be satisfied by any x ∊ N. Feasibility required to show
that instances that satisfy a predicate do exist.

Wrap-up

2022-04-08 29

• We have studied how to model control systems in Event-B and reason about
their safety properties

• Safety is defined as invariant

• We have learnt how to use functions and relations to model various access
control functions

• It allows us to demonstrate that no unauthorised access to some resources is
possible

• It is an important security control mechanism

• Finally, we have learnt to use proofs as the “debagging” mechanism

• Modelling dynamic properties such as liveness is not straightforward in Event-B

• So welcome a new topic – Model checking!

