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DD2460 Lecture 4. 
Basics of modelling in Event-B
Elena Troubitsyna



Lecture outline
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• Structure of Event-B specification (project)



Event-B

•Event-B is a formal framework for modelling and verification of reactive systems
• abstraction, decomposition and refinement to cope with model complexity

• proof-based verification of functional correctness

• requirements traceability

• mature tool support (Rodin)
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Development by refinement
• Model-based approaches that support correct-by-construction

system development by refinement
• Idea of formal development by refinement:

• To start with a very abstract model and gradually introduce system 
details by a number of correctness preserving steps called refinements

• Each development (refinement) step is proved to be correct with 
respect to a more abstract specification

• Abstract model is concise and simple, hence it can be fully 
understood and analysed

• Complexity of the model increases gradually in a controlled way



Structure of Event-B model (specification)

• An Event-B model is made of several components.
A specification consists of 
 a static part, specified in a context, and 
 a dynamic part, specified in a machine.

MACHINE

VARIABLES
INVARIANTS
THEOREMS
VARIANT
EVENTS

CONTEXT

SETS
CONSTANTS
AXIOMS

´´sees´´



Relationship between machines 
and contexts

 Contexts contain the static structure of a discrete system (constants
and axioms)
Machines contain the dynamic structure of a discrete system

(variables, invariants, and events)

- Machines see contexts
- Contexts can be extended
- Machines can be refined

Context c1

ds

Machine m1 sees

refines

Machine m2 sees Context c2

extends
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Visibility Rules

 A machine can see several contexts (or no context at all).

 A context may extend several contexts (or no context at all).

 A machine implicitly sees all contexts extended by a seen context.

 A machine only sees a context either explicitly or implicitly.




A machine only refines at most one other machine. 

No cycle in the "refines" or "extends" relationships.

Context c1Machine m1 sees

refines

Machine m2 sees
Context c2
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An Event-B project
o A project contains the complete mathematical development.
o Contains two kinds of components: Contexts and Machines.
o Projects and components are listed in the tool
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Context part

• A context with name Context1 has the following form:
CONTEXT Context1

SETS ⟨list of carrier sets⟩ CONSTANTS

⟨list of constants⟩ AXIOMS ⟨list of 

labelled axioms⟩ THEOREMS* ⟨list of 

labelled theorems⟩

END

the context contains the static part of a model

the context defines sets, constants that can be used 
in several different machines

different properties for the sets and constants are 
given in axioms-clause
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Context part

• A context with name Context1 has the following form:
A context has a unique name

 sets-clause contains the non-empty carrier sets

 constants-clause contains constants
• they can be read but not assigned values

axioms-clause lists the predicates that should hold for 
the constants
• Defines types and logical properties
• Hypotheses in all proof obligations

• theorems-clause lists the theorems
• They have to be proved within the context

CONTEXT Context1

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled theorems⟩

END
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Context part

• A context with name Context1 has the following form:
 A context can extend another context

 extends-clause defines it
CONTEXT Context1 EXTENDS Context0 SETS ⟨list

of carrier sets⟩ 

CONSTANTS ⟨list of constants⟩ 

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled theorems⟩

END
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Example on context
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CONTEXT UniversityContext

SETS STUDENTS …

CONSTANTS 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

AXIOMS

axm1: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℤ

axm2: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 30

…

END



Machine part

• A machine with name Machine1 has the following form:
MACHINE Machine1

SEES* ⟨list of context names⟩ 

VARIABLES ⟨list of variables⟩ 

INVARIANTS ⟨list of labelled invariants⟩ 

EVENTS ⟨list of events⟩

END

A machine defines the dynamic behaviour of a model 
through events that are guarded by and act on the 
variables.

 Machine-clause gives the name of the machine

Sees-clause lists the contexts that the machine can 
see

Variables-clause gives state of the module that can be 
modified locally in the machine
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Machine part

• A machine with name Machine1 has the following form:
Invariants-clause lists the predicates that must hold for 
the variables and gluing invariants
• The types of the variables
• Restriction and relations between variables

Event-clause contains the relevant events that change 
the state of the machine while preserving the invariant
• An event describes the relationships between the state

before the event takes place and just afterwards
• Event INITIALISATION gives initial values to the variables and 

establishes the invariants

MACHINE Machine1

SEES* ⟨list of context names⟩ 

VARIABLES ⟨list of variables⟩ 

INVARIANTS ⟨list of labelled invariants⟩ 

EVENTS ⟨list of events⟩

END
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Remark on difference between model 
and a program

• Machines should not be thought of as programs
 although they might be implemented by software.

• The machine models a state and the events represent behaviour that 
could occur
 the conditions that must apply if an event is to fire; and
 the effect the event has on the state.

• All communication occurs through the state.
 machine gives a representation of possible behaviours of some system. The

system might contain non-software components.
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Example of a machine

MACHINE RegistrationSystem
SEES UniversityContext

VARIABLES registered enrolled

INVARIANTS

inv1: registered ⊆ STUDENTS

inv2: enrolled ⊆ STUDENTS

inv3: enrolled ⊆ registered

…

EVENTS ⟨list of events⟩

END
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• Registered students form a subset of 
abstract set  STUDENTS defined in 
CONTEXT
• inv3: only registered students can be
enrolled



An Event-B model

 A model can contain:
• Only contexts (represents a pure mathematical structure)
• Only machines (the model is not parametrised)
• Both machines and contexts

 All machines and context identifiers must be distinct in the same
model (project)
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Event-B events

 All events represent transitions
 The events modify the state of the 

system (values of variables)
• An event is a state transition in a

discrete dynamic system.
 They are executed in one (atomic) 

step
 Only one event fires at a time.

 An event essentially consists of 
guards and actions.
Hence they are said to be guarded events.

• Event = guard + action

MACHINE Machine1

SEES* ⟨list of context names⟩ 

VARIABLES ⟨list of variables⟩ 

INVARIANTS ⟨list of labelled invariants⟩ 

EVENTS ⟨list of events⟩

END
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Guarded events

Event = guard + action
 An event essentially consists of guards and actions.

• the guards define the necessary conditions for the event to be enabled
• the actions define the way the variables of the machine are modified

 A guarded event can be executed only when its guard is true
• if more than one guard is true, one of them is non-deterministically chosen
• if no guards are true, the specification will terminate.
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Event structure

Event1 = // event name
any

x1 x2 // event parameters
where

G1 
G2
…

// event guards

then
v1 := exp1 // event actions 
v2 := exp2
…

end

Events are identified by unique names

any-clause lists the parameters (or local 
variables) of the event

where-clause contains the guards of the 
event, i.e., the conditions for the event to be 
enabled

 then-clause lists the actions of the event
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Events: general form

Event1 =

any
x1, x2 
where 

G1
G2
…

then
v1 := exp1 

v2 := exp2
…

end

 A machine can contain arbitrary many events

 An event can have one of the following forms:

Event2 = 
when 

G1
G2
…
then

v1 := exp1 
v2 := exp2
…

end

Event3 =

begin
v1 := exp1 
v2 := exp2

…
end
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Event guards

A guards is a predicate that specifies enabling
conditions under which events may occur
 Example, booking a room for the lecture

grd1:  𝒍𝒍𝒍𝒍𝒍𝒍 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
grd2:  𝒍𝒍𝒍𝒍 ∈ LHALL 

• Guards should be strong enough to ensure
invariants are maintained by the actions of an event
but not too strong that they prevent desirable
behaviour
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Event actions

 An action describes the ways one or several state variables are
modified by the occurrence of an event
 An action might be either deterministic or non-deterministic
 There are three principle constructions — that Event B calls

substitutions — for changing the state of a machine:
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• 𝒙𝒙 ≔ 𝒍𝒍 // 𝒙𝒙 becomes equal to the value of e
This rule may be used recursively to assign to any number of variables. 

• 𝒙𝒙: | 𝑷𝑷 // 𝒙𝒙 becomes such that it satisfies the before-after predicate P
• 𝒙𝒙: ∈ 𝑳𝑳 // 𝒙𝒙 becomes in the set S 



Event actions cnt.

𝒙𝒙 ≔ 𝒍𝒍 and 𝒙𝒙: | 𝑷𝑷 can be extended to multiple assignment: 
𝒙𝒙, 𝒚𝒚 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆 and     𝒙𝒙, 𝒚𝒚 ∶ | 𝑷𝑷 , 

and recursively to many variables. 

• The variables must be distinct! 𝒙𝒙, 𝒙𝒙, 𝒛𝒛 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆

• Note: all assignments can be written in the form: 𝒙𝒙, 𝒚𝒚: |𝑷𝑷
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Deterministic actions

Here is the form of some deterministic actions on variables 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛: 
Event example 

...
Then

act1: 𝒙𝒙 ≔ 𝒙𝒙 + 𝒚𝒚
act2: 𝐲𝐲 ≔ 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛

...
 Notice that variables 𝒙𝒙 and 𝒚𝒚 should be distinct. 
 Actions are supposed to be ´´performed´´ in parallel. 
 Variables 𝒙𝒙 and 𝒚𝒚 are assigned to 𝒙𝒙 + 𝒚𝒚 and 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛, respectively. 
 Variable 𝒛𝒛 is used but not modified by these actions 
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Non-deterministic actions

• A non-deterministic actions  of the form
• 𝒙𝒙 ∶ | 𝑷𝑷

// 𝒙𝒙 becomes such that it satisfies the before-after predicate 𝑷𝑷

 The before-after-predicate gives the condition that holds just 
before the action takes place. It may contain all variables of the 
machine.
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Non-deterministic actions (example)

• 𝒙𝒙, 𝒚𝒚 ∶ | 𝒙𝒙′ > 𝒙𝒙 ∧ 𝒚𝒚′ < 𝒙𝒙′

 On the LHS of operator :|, we have two distinct variables 
 On the RHS, we have a before-after predicate 
 The RHS contains occurrences of 𝒙𝒙 and 𝒚𝒚 (before values) and 

primed occurrences 𝒙𝒙′ and 𝒚𝒚′ (after values) 
 As a result (in this example):

• 𝒙𝒙 is assigned a value greater than its previous value
• 𝒚𝒚 is assigned a value smaller than that, 𝒙𝒙′, assigned to 𝒙𝒙
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Non-deterministic action (cont.)
𝒙𝒙 ∶∈ 𝑳𝑳

 The variable is assigned an arbitrary element of the set 𝑳𝑳.
 This form is a special form of the previous one.

 Example 1:
act1: 𝒙𝒙 ∶∈ 𝒙𝒙 + 𝒆𝒆, 𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑

Here 𝒙𝒙 is assigned any value from the set  𝒙𝒙 + 𝒆𝒆, 𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑
 Example 2:

act2: 𝒔𝒔𝒔𝒔 ∶∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳
Here 𝒔𝒔𝒔𝒔 is assigned any value from the set 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳
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Non-deterministic action (another example)

• act1: 𝒙𝒙 ∶∈ 𝒂𝒂 | 𝟎𝟎 < 𝒂𝒂 ∧ 𝒂𝒂 < 𝟓𝟓𝟎𝟎

Here 𝒙𝒙 is assigned any arbitrary number between 1 and 49.
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Simple example: Coffee club

• Lets create a model of a coffee club. 
• For the coffee club we require a moneybank that stores money 

used by the coffee club. 
• REQ1: a money bank for storing and reclaiming finite, non-

negative funds for a coffee club; 
• REQ2: an operation for adding money to the money bank; 
• REQ3: an operation for removing money from the money bank;  

cannot remove more than money bank contains. 
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Example cnt: moneybank variable
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MACHINE CoffeeClub
VARIABLES moneybank

// The machine state is represented by the variable, moneybank, 
denoting the money bank for the coffee club. 

INVARIANTS
inv1: moneybank ∈ ℕ // REQ1: moneybank must not be negative. 

// here ∈ set membership 
// ℕ - the set of natural numbers

N NAT the set of natural numbers = non-negative integers 



Model events

…
EVENTS
INITIALISATION ≜

then 
act1: moneybank:= 0 // we initialise moneybank to 0 

end 

FEEDBANK ≜ // REQ2: adding to moneybank
any  amount
where

grd1: amount ∈ ℕ1 // ℕ1 is used rather than ℕ to prevent the event firing 
uselessly if amount = 0 

then 
act1: moneybank := moneybank + amount

end 



Example cnt.: Model events (cont.)

…
ROBBANK ≜ // REQ3: removing money from moneybank

any amount
where

grd1: amount ∈ 1 .. moneybank // The amount must not exceed the contents of money-

bank and we don’t need to uselessly remove an amount of 0

then 
act1: moneybank := moneybank - amount

end 
END



CoffeeClub model
Machine CoffeeClub
Variables moneybank

inv1: moneybank ∈ ℕ
Events

INITIALISATION ≜
then 

act1: moneybank:= 0 
end 

FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then 
act1: moneybank := moneybank + 

amount
end 

ROBBANK ≜
any amount

where
grd1: amount ∈ 1 .. moneybank

then 
act1: moneybank := moneybank - amount

end 

END



Coffee club model in Rodin Editor



Demo of Rodin platform





Model importing
• A “.zip" file corresponding to a 

project which has been exported 
elsewhere can be imported locally.

• File > Import from the menubar
• In the import wizard select General

> Existing Projects into 
Workspace and click Next.

• Then choose the Select archive 
file option and hit 
the Browse... button to find the zip 
file that you want to import.

• Now click Finish. 



Model exporting

• Exporting a project is the operation by 
which you can construct automatically a 
“.zip" file containing the entire project.

• It then becomes a project like the other 
ones which were created locally.

• In order to export a project, select it and 
then select on File > Export... from the 
menubar.

• The Export wizard will pop up. In this 
window, select General, Archive File 
and click the Next button.

• Specify the path and name of the 
archive file into which you want to export 
your project and finally select Finish.



Proof Obligations for CoffeeClub

• CoffeeClub is a very simple 
model and the POs are 
correspondingly simple. 

• As a consequence the POs are 
easily discharged automatically 
by the provers in the Rodin tool. 

• The following POs are 
generated for the above 
machine. 

• Notice that all POs concerned 
with maintenance of INV 1 are 
verifying that REQ1 is satisfied. 



The semantic of the events

• In order to formally be able to control that the events do, what 
they are supposed to do, we have to give them as exact 
mathematical semantics

• The events change the local state (the variables) of a 
specification. 

• An event describes the relationship between the before-state 
and the after-state. 



The state of a specification

• The state of a specification (an Event-B machine) can be a 
combination of all possible values of its variables 

• The state of the specification can be modelled as the value of 
the cartesian product of these variable types 
 For example if we have 2 variables of type natural numbers, then the 

state is N x N (all possible pairs of natural numbers) 
• The events of the specification change the state 



Different kinds of state changes 

• Deterministic
o 1-1 relationship between initial and final states – guaranteed to reach the 

final state
o Ex. … then moneybank := moneybank + amount end 

• Non-deterministic
o 1-n relationship
o may reach different final states – Ex. … then n ∶∈ 1..5 end 

• Non-executable
o in “waiting mode”
oEx. when n>2 then n := n+1 end 

• Non-terminating
o 1-0 relationship
o guaranteed not to reach a final state 



Substitution 

• Substitution is a central concept in Event-B 
• Substitution refers to substituting a free variable with an 

expression 
‒Substitution of variable x in predicate P with expression E is denoted: 

P[E/x]
‒A variable in an expression is free, if it is not bound by a quantifier 
‒ The variables in E should not become bound after the substitution 

• This can be generalised to multiple substitution P[E1, ..., En / 
x1, ..., xn] 



Before-after-predicate 

• Every event can be associated with a before-after predicate 
• The predicate gives the relationship between the values of the 

variable right before (n) and right after (n’) the event has 
occured

• Example, the events

• correspond to the following before-after-predicates 

FEEDBANK ≜
moneybank := moneybank + amount

RODBANK ≜
moneybank := moneybank - amount

moneybank’ = moneybank + amount moneybank’ = moneybank - amount



Before-after predicates 

• Before-after predicates (BA) for events can be calculated based 
on the following: 
• BA(any v where G then S end)= ∃v. G∧ BA(S)
• BA(when G then S end) = G ∧ BA(S)
• BA(begin S end) = BA(S) 
BA calculations for statements give: 
• BA(v:=E)=(v’=E)
• BA(v:∈Q)=(v’∈Q)
• BA(v :| P(v’,v)) = P(v’,v) 



Consistency of Contexts 

• In order to be consistent the Event-B context must satisfy the 
following properties:  

1. All its axioms must be well defined (axm/WD) 
2. All its theorems must be well defined (thm/WD) 
3. All its theorems must be proved (thm/THM) 



Consistency of a Machine

In order to be consistent a machine must satisfy the following conditions:
1. All it invariants and theorems must be well defined (inv/WD and 

thm/WD) 
2. All its event guards and actions must be well defined (grd/WD and 

act/WD) 
3. All its nondeterministic events must be feasible (evt/act/FIS) 
4. All its theorems must be proved (thm/THM) 
5. All invariants must be established by the initialisation (INIT/inv/INV) 
6. All invariants must be preserved by all events (evt/inv/INV) 
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• Recall that we discussed that safety requirements are typically defined as 
“Always”

• If the specification contains the invariant defining safety requirements then 
by verifying correctness of the specification, we at the same time verify 
safety

• Proofs allows us to investigate all possible execution traces
• Observe: we do not need to explicitly define all possible states (infinite 

number) but still are able to proof the desired properties
• But if the specification does not contain any useful invariants (e.g., only types of variables) 

then modelling exercise becomes pointless 

Verification of model correctness and safety



Wrap-up

• We learn about the structure of Event-B specification
• Investigated what is the CONTEXT and MACHINE
• Studied the structure of events 
• Learnt about invariants
• Learnt about the verification of Event-B models
• Established connection between safety requirements, invariants 

and proofs
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Questions?
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