
Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

DD2460 Lecture 4.
Basics of modelling in Event-B
Elena Troubitsyna

Lecture outline

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

• Structure of Event-B specification (project)

Event-B

•Event-B is a formal framework for modelling and verification of reactive systems
• abstraction, decomposition and refinement to cope with model complexity

• proof-based verification of functional correctness

• requirements traceability

• mature tool support (Rodin)

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Development by refinement
• Model-based approaches that support correct-by-construction

system development by refinement
• Idea of formal development by refinement:

• To start with a very abstract model and gradually introduce system
details by a number of correctness preserving steps called refinements

• Each development (refinement) step is proved to be correct with
respect to a more abstract specification

• Abstract model is concise and simple, hence it can be fully
understood and analysed

• Complexity of the model increases gradually in a controlled way

Structure of Event-B model (specification)

• An Event-B model is made of several components.
A specification consists of
 a static part, specified in a context, and
 a dynamic part, specified in a machine.

MACHINE

VARIABLES
INVARIANTS
THEOREMS
VARIANT
EVENTS

CONTEXT

SETS
CONSTANTS
AXIOMS

´´sees´´

Relationship between machines
and contexts

 Contexts contain the static structure of a discrete system (constants
and axioms)
Machines contain the dynamic structure of a discrete system

(variables, invariants, and events)

- Machines see contexts
- Contexts can be extended
- Machines can be refined

Context c1

ds

Machine m1 sees

refines

Machine m2 sees Context c2

extends

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Visibility Rules

 A machine can see several contexts (or no context at all).

 A context may extend several contexts (or no context at all).

 A machine implicitly sees all contexts extended by a seen context.

 A machine only sees a context either explicitly or implicitly.

A machine only refines at most one other machine.

No cycle in the "refines" or "extends" relationships.

Context c1Machine m1 sees

refines

Machine m2 sees
Context c2

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

An Event-B project
o A project contains the complete mathematical development.
o Contains two kinds of components: Contexts and Machines.
o Projects and components are listed in the tool

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Context part

• A context with name Context1 has the following form:
CONTEXT Context1

SETS ⟨list of carrier sets⟩ CONSTANTS

⟨list of constants⟩ AXIOMS ⟨list of

labelled axioms⟩ THEOREMS* ⟨list of

labelled theorems⟩

END

the context contains the static part of a model

the context defines sets, constants that can be used
in several different machines

different properties for the sets and constants are
given in axioms-clause

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Context part

• A context with name Context1 has the following form:
A context has a unique name

 sets-clause contains the non-empty carrier sets

 constants-clause contains constants
• they can be read but not assigned values

axioms-clause lists the predicates that should hold for
the constants
• Defines types and logical properties
• Hypotheses in all proof obligations

• theorems-clause lists the theorems
• They have to be proved within the context

CONTEXT Context1

SETS ⟨list of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled theorems⟩

END

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Context part

• A context with name Context1 has the following form:
 A context can extend another context

 extends-clause defines it
CONTEXT Context1 EXTENDS Context0 SETS ⟨list

of carrier sets⟩

CONSTANTS ⟨list of constants⟩

AXIOMS ⟨list of labelled axioms⟩

THEOREMS* ⟨list of labelled theorems⟩

END

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Example on context

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

CONTEXT UniversityContext

SETS STUDENTS …

CONSTANTS 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

AXIOMS

axm1: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℤ

axm2: 𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 30

…

END

Machine part

• A machine with name Machine1 has the following form:
MACHINE Machine1

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

A machine defines the dynamic behaviour of a model
through events that are guarded by and act on the
variables.

 Machine-clause gives the name of the machine

Sees-clause lists the contexts that the machine can
see

Variables-clause gives state of the module that can be
modified locally in the machine

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Machine part

• A machine with name Machine1 has the following form:
Invariants-clause lists the predicates that must hold for
the variables and gluing invariants
• The types of the variables
• Restriction and relations between variables

Event-clause contains the relevant events that change
the state of the machine while preserving the invariant
• An event describes the relationships between the state

before the event takes place and just afterwards
• Event INITIALISATION gives initial values to the variables and

establishes the invariants

MACHINE Machine1

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Remark on difference between model
and a program

• Machines should not be thought of as programs
 although they might be implemented by software.

• The machine models a state and the events represent behaviour that
could occur
 the conditions that must apply if an event is to fire; and
 the effect the event has on the state.

• All communication occurs through the state.
 machine gives a representation of possible behaviours of some system. The

system might contain non-software components.

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Example of a machine

MACHINE RegistrationSystem
SEES UniversityContext

VARIABLES registered enrolled

INVARIANTS

inv1: registered ⊆ STUDENTS

inv2: enrolled ⊆ STUDENTS

inv3: enrolled ⊆ registered

…

EVENTS ⟨list of events⟩

END

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

• Registered students form a subset of
abstract set STUDENTS defined in
CONTEXT
• inv3: only registered students can be
enrolled

An Event-B model

 A model can contain:
• Only contexts (represents a pure mathematical structure)
• Only machines (the model is not parametrised)
• Both machines and contexts

 All machines and context identifiers must be distinct in the same
model (project)

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Event-B events

 All events represent transitions
 The events modify the state of the

system (values of variables)
• An event is a state transition in a

discrete dynamic system.
 They are executed in one (atomic)

step
 Only one event fires at a time.

 An event essentially consists of
guards and actions.
Hence they are said to be guarded events.

• Event = guard + action

MACHINE Machine1

SEES* ⟨list of context names⟩

VARIABLES ⟨list of variables⟩

INVARIANTS ⟨list of labelled invariants⟩

EVENTS ⟨list of events⟩

END

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Guarded events

Event = guard + action
 An event essentially consists of guards and actions.

• the guards define the necessary conditions for the event to be enabled
• the actions define the way the variables of the machine are modified

 A guarded event can be executed only when its guard is true
• if more than one guard is true, one of them is non-deterministically chosen
• if no guards are true, the specification will terminate.

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Event structure

Event1 = // event name
any

x1 x2 // event parameters
where

G1
G2
…

// event guards

then
v1 := exp1 // event actions
v2 := exp2
…

end

Events are identified by unique names

any-clause lists the parameters (or local
variables) of the event

where-clause contains the guards of the
event, i.e., the conditions for the event to be
enabled

 then-clause lists the actions of the event

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Events: general form

Event1 =

any
x1, x2
where

G1
G2
…

then
v1 := exp1

v2 := exp2
…

end

 A machine can contain arbitrary many events

 An event can have one of the following forms:

Event2 =
when

G1
G2
…
then

v1 := exp1
v2 := exp2
…

end

Event3 =

begin
v1 := exp1
v2 := exp2

…
end

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Event guards

A guards is a predicate that specifies enabling
conditions under which events may occur
 Example, booking a room for the lecture

grd1: 𝒍𝒍𝒍𝒍𝒍𝒍 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
grd2: 𝒍𝒍𝒍𝒍 ∈ LHALL

• Guards should be strong enough to ensure
invariants are maintained by the actions of an event
but not too strong that they prevent desirable
behaviour

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Event actions

 An action describes the ways one or several state variables are
modified by the occurrence of an event
 An action might be either deterministic or non-deterministic
 There are three principle constructions — that Event B calls

substitutions — for changing the state of a machine:

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

• 𝒙𝒙 ≔ 𝒍𝒍 // 𝒙𝒙 becomes equal to the value of e
This rule may be used recursively to assign to any number of variables.

• 𝒙𝒙: | 𝑷𝑷 // 𝒙𝒙 becomes such that it satisfies the before-after predicate P
• 𝒙𝒙: ∈ 𝑳𝑳 // 𝒙𝒙 becomes in the set S

Event actions cnt.

𝒙𝒙 ≔ 𝒍𝒍 and 𝒙𝒙: | 𝑷𝑷 can be extended to multiple assignment:
𝒙𝒙, 𝒚𝒚 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆 and 𝒙𝒙, 𝒚𝒚 ∶ | 𝑷𝑷 ,

and recursively to many variables.

• The variables must be distinct! 𝒙𝒙, 𝒙𝒙, 𝒛𝒛 ≔ 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆, 𝒍𝒍𝒆𝒆

• Note: all assignments can be written in the form: 𝒙𝒙, 𝒚𝒚: |𝑷𝑷

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Deterministic actions

Here is the form of some deterministic actions on variables 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛:
Event example

...
Then

act1: 𝒙𝒙 ≔ 𝒙𝒙 + 𝒚𝒚
act2: 𝐲𝐲 ≔ 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛

...
 Notice that variables 𝒙𝒙 and 𝒚𝒚 should be distinct.
 Actions are supposed to be ´´performed´´ in parallel.
 Variables 𝒙𝒙 and 𝒚𝒚 are assigned to 𝒙𝒙 + 𝒚𝒚 and 𝒚𝒚 + 𝒙𝒙 − 𝒛𝒛, respectively.
 Variable 𝒛𝒛 is used but not modified by these actions

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Non-deterministic actions

• A non-deterministic actions of the form
• 𝒙𝒙 ∶ | 𝑷𝑷

// 𝒙𝒙 becomes such that it satisfies the before-after predicate 𝑷𝑷

 The before-after-predicate gives the condition that holds just
before the action takes place. It may contain all variables of the
machine.

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Non-deterministic actions (example)

• 𝒙𝒙, 𝒚𝒚 ∶ | 𝒙𝒙′ > 𝒙𝒙 ∧ 𝒚𝒚′ < 𝒙𝒙′

 On the LHS of operator :|, we have two distinct variables
 On the RHS, we have a before-after predicate
 The RHS contains occurrences of 𝒙𝒙 and 𝒚𝒚 (before values) and

primed occurrences 𝒙𝒙′ and 𝒚𝒚′ (after values)
 As a result (in this example):

• 𝒙𝒙 is assigned a value greater than its previous value
• 𝒚𝒚 is assigned a value smaller than that, 𝒙𝒙′, assigned to 𝒙𝒙

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Non-deterministic action (cont.)
𝒙𝒙 ∶∈ 𝑳𝑳

 The variable is assigned an arbitrary element of the set 𝑳𝑳.
 This form is a special form of the previous one.

 Example 1:
act1: 𝒙𝒙 ∶∈ 𝒙𝒙 + 𝒆𝒆, 𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑

Here 𝒙𝒙 is assigned any value from the set 𝒙𝒙 + 𝒆𝒆, 𝒚𝒚 − 𝒆𝒆, 𝒛𝒛 + 𝟑𝟑
 Example 2:

act2: 𝒔𝒔𝒔𝒔 ∶∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳
Here 𝒔𝒔𝒔𝒔 is assigned any value from the set 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑳𝑳𝑺𝑺𝑳𝑳𝑳𝑳

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Non-deterministic action (another example)

• act1: 𝒙𝒙 ∶∈ 𝒂𝒂 | 𝟎𝟎 < 𝒂𝒂 ∧ 𝒂𝒂 < 𝟓𝟓𝟎𝟎

Here 𝒙𝒙 is assigned any arbitrary number between 1 and 49.

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Simple example: Coffee club

• Lets create a model of a coffee club.
• For the coffee club we require a moneybank that stores money

used by the coffee club.
• REQ1: a money bank for storing and reclaiming finite, non-

negative funds for a coffee club;
• REQ2: an operation for adding money to the money bank;
• REQ3: an operation for removing money from the money bank;

cannot remove more than money bank contains.

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Example cnt: moneybank variable

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

MACHINE CoffeeClub
VARIABLES moneybank

// The machine state is represented by the variable, moneybank,
denoting the money bank for the coffee club.

INVARIANTS
inv1: moneybank ∈ ℕ // REQ1: moneybank must not be negative.

// here ∈ set membership
// ℕ - the set of natural numbers

N NAT the set of natural numbers = non-negative integers

Model events

…
EVENTS
INITIALISATION ≜

then
act1: moneybank:= 0 // we initialise moneybank to 0

end

FEEDBANK ≜ // REQ2: adding to moneybank
any amount
where

grd1: amount ∈ ℕ1 // ℕ1 is used rather than ℕ to prevent the event firing
uselessly if amount = 0

then
act1: moneybank := moneybank + amount

end

Example cnt.: Model events (cont.)

…
ROBBANK ≜ // REQ3: removing money from moneybank

any amount
where

grd1: amount ∈ 1 .. moneybank // The amount must not exceed the contents of money-

bank and we don’t need to uselessly remove an amount of 0

then
act1: moneybank := moneybank - amount

end
END

CoffeeClub model
Machine CoffeeClub
Variables moneybank

inv1: moneybank ∈ ℕ
Events

INITIALISATION ≜
then

act1: moneybank:= 0
end

FEEDBANK ≜
any amount

where
grd1: amount ∈ ℕ1

then
act1: moneybank := moneybank +

amount
end

ROBBANK ≜
any amount

where
grd1: amount ∈ 1 .. moneybank

then
act1: moneybank := moneybank - amount

end

END

Coffee club model in Rodin Editor

Demo of Rodin platform

Model importing
• A “.zip" file corresponding to a

project which has been exported
elsewhere can be imported locally.

• File > Import from the menubar
• In the import wizard select General

> Existing Projects into
Workspace and click Next.

• Then choose the Select archive
file option and hit
the Browse... button to find the zip
file that you want to import.

• Now click Finish.

Model exporting

• Exporting a project is the operation by
which you can construct automatically a
“.zip" file containing the entire project.

• It then becomes a project like the other
ones which were created locally.

• In order to export a project, select it and
then select on File > Export... from the
menubar.

• The Export wizard will pop up. In this
window, select General, Archive File
and click the Next button.

• Specify the path and name of the
archive file into which you want to export
your project and finally select Finish.

Proof Obligations for CoffeeClub

• CoffeeClub is a very simple
model and the POs are
correspondingly simple.

• As a consequence the POs are
easily discharged automatically
by the provers in the Rodin tool.

• The following POs are
generated for the above
machine.

• Notice that all POs concerned
with maintenance of INV 1 are
verifying that REQ1 is satisfied.

The semantic of the events

• In order to formally be able to control that the events do, what
they are supposed to do, we have to give them as exact
mathematical semantics

• The events change the local state (the variables) of a
specification.

• An event describes the relationship between the before-state
and the after-state.

The state of a specification

• The state of a specification (an Event-B machine) can be a
combination of all possible values of its variables

• The state of the specification can be modelled as the value of
the cartesian product of these variable types
 For example if we have 2 variables of type natural numbers, then the

state is N x N (all possible pairs of natural numbers)
• The events of the specification change the state

Different kinds of state changes

• Deterministic
o 1-1 relationship between initial and final states – guaranteed to reach the

final state
o Ex. … then moneybank := moneybank + amount end

• Non-deterministic
o 1-n relationship
o may reach different final states – Ex. … then n ∶∈ 1..5 end

• Non-executable
o in “waiting mode”
oEx. when n>2 then n := n+1 end

• Non-terminating
o 1-0 relationship
o guaranteed not to reach a final state

Substitution

• Substitution is a central concept in Event-B
• Substitution refers to substituting a free variable with an

expression
‒Substitution of variable x in predicate P with expression E is denoted:

P[E/x]
‒A variable in an expression is free, if it is not bound by a quantifier
‒ The variables in E should not become bound after the substitution

• This can be generalised to multiple substitution P[E1, ..., En /
x1, ..., xn]

Before-after-predicate

• Every event can be associated with a before-after predicate
• The predicate gives the relationship between the values of the

variable right before (n) and right after (n’) the event has
occured

• Example, the events

• correspond to the following before-after-predicates

FEEDBANK ≜
moneybank := moneybank + amount

RODBANK ≜
moneybank := moneybank - amount

moneybank’ = moneybank + amount moneybank’ = moneybank - amount

Before-after predicates

• Before-after predicates (BA) for events can be calculated based
on the following:
• BA(any v where G then S end)= ∃v. G∧ BA(S)
• BA(when G then S end) = G ∧ BA(S)
• BA(begin S end) = BA(S)
BA calculations for statements give:
• BA(v:=E)=(v’=E)
• BA(v:∈Q)=(v’∈Q)
• BA(v :| P(v’,v)) = P(v’,v)

Consistency of Contexts

• In order to be consistent the Event-B context must satisfy the
following properties:

1. All its axioms must be well defined (axm/WD)
2. All its theorems must be well defined (thm/WD)
3. All its theorems must be proved (thm/THM)

Consistency of a Machine

In order to be consistent a machine must satisfy the following conditions:
1. All it invariants and theorems must be well defined (inv/WD and

thm/WD)
2. All its event guards and actions must be well defined (grd/WD and

act/WD)
3. All its nondeterministic events must be feasible (evt/act/FIS)
4. All its theorems must be proved (thm/THM)
5. All invariants must be established by the initialisation (INIT/inv/INV)
6. All invariants must be preserved by all events (evt/inv/INV)

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

• Recall that we discussed that safety requirements are typically defined as
“Always”

• If the specification contains the invariant defining safety requirements then
by verifying correctness of the specification, we at the same time verify
safety

• Proofs allows us to investigate all possible execution traces
• Observe: we do not need to explicitly define all possible states (infinite

number) but still are able to proof the desired properties
• But if the specification does not contain any useful invariants (e.g., only types of variables)

then modelling exercise becomes pointless

Verification of model correctness and safety

Wrap-up

• We learn about the structure of Event-B specification
• Investigated what is the CONTEXT and MACHINE
• Studied the structure of events
• Learnt about invariants
• Learnt about the verification of Event-B models
• Established connection between safety requirements, invariants

and proofs

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

Questions?

Elena Troubitsyna. DD2460 Software Safety and Security. Lecture 4.

	DD2460 Lecture 4. �Basics of modelling in Event-B
	Lecture outline
	Event-B
	Development by refinement
	Structure of Event-B model (specification)
	Relationship between machines and contexts
	Visibility Rules
	An Event-B project
	Context part
	Context part
	Context part
	Example on context
	Machine part
	Machine part
	Slide Number 15
	Example of a machine
	An Event-B model
	Event-B events
	Guarded events
	Event structure
	Events: general form
	Event guards
	Event actions
	Event actions cnt.
	Deterministic actions
	Non-deterministic actions
	Non-deterministic actions (example)
	Non-deterministic action (cont.)
	Non-deterministic action (another example)
	Simple example: Coffee club
	Example cnt: moneybank variable
	Model events
	Example cnt.: Model events (cont.)
	CoffeeClub model
	Coffee club model in Rodin Editor
	Demo of Rodin platform
	Slide Number 37
	Model importing
	Model exporting
	Proof Obligations for CoffeeClub
	The semantic of the events
	The state of a specification
	Different kinds of state changes
	Substitution
	Before-after-predicate
	Before-after predicates
	Consistency of Contexts
	Consistency of a Machine
	Verification of model correctness and safety
	Wrap-up
	Questions?

