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Adaptive methods
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Navier-Stokes equations

The incompressible Navier-Stokes equations then takes the form,
u+ (u-V)u+ Vp —vAu = f,
V-u=0,

with the kinematic viscosity v = u/p

No slip boundary condition: u = 0
Slip boundary conditions: u - n = 0
Friction boundary conditions: n’ ot; = Bu - t;

Outflow boundary conditions: nTo = 0



Incompressible flow — attachment point
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[Water and aluminum dust.]



Incompressible flow —boundary layer
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[Water and aluminum dust.]




Cylinder (Re = 0.16) — separation point
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[Water and aluminum dust.]



Cylinder (Re = 26) — 2 separation points
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[Oil and magnesium.]



Cylinder (Re = 26) — 2 vortices
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[Oil and magnesium.]




Cylinder (Re = 300) — Karman vortex street

[Wind and smoke.]



Cylinder (Re = 2000) — shear layer
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[Water and air bubbles.]



Cylinder (Re = 2000) — 3D turbulent wake

[Water and air bubbles.]
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Re = 10 000 — turbulent shear layers

[Water and air bubbles.]



Sphere: Re = 15 000 vs 30 000
turbulent boundary layers (drag crisis)




Sphere: Re = 15 000 vs 30 000
turbulent boundary layers (drag crisis)




Sphere: Re = 15 000 vs 30 000
trip wire —to trigger turbulent boundary layer




Sphere: Re = 15 000 vs 30 000
trip wire —to trigger turbulent boundary layer

[https://en.wikipedia.org/wiki/Golf_Ball#/media/File:Golf Ball.jpg]
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Streamwise vortex structures in the wake

[Korotkin 1976]

[Humphreys JFM 1960]




Delayed separation and vortex structures
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[https://sv.m.wikipedia.org/wiki/Fil:Cessna_182_model-wingtip-vortex.jpg]
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[https://en.wikipedia.org/wiki/File:Airplane_vortex_edit.jpg]



Delayed separation - downwash

[https://i.redd.it/7yj9h0x2h9f61.jpg] [https://www.grc.nasa.gov/www/k-12/airplane/downwash.html]



Simulation of airflow past airplane

Pseudocolor
Var: Velocity_magnitude

B
0.000 9.363 18.73 28.09 37.45

Max: 37.45
Min: 0.000

[Jansson et al., Springer, 2018]



Simulation of airflow past airplane
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[Jansson et al., Springer, 2018]



Discretization by a mesh
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[Jansson et al., Springer, 2018]



Magnus effect — downwash through rotation

[https://en.wikipedia.org/wiki/Magnus_effect##/media/File:Magnus-anim-canette.gif]



Buckau - Flettner rotor ship 1924
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[https://en.wikipedia.org/wiki/Flettner_rotor#/media/File:Buckau_Flettner_Rotor_Ship LOC_37764u.jpg]



Grace - Flettner rotor ship 2019
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Grace - Flettner rotor ship 2019
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Simulation of airflow past landing gear

[De Abreu et al.,, Computers and Fluids, 2016]



Adaptively refined mesh

Lighthill (db)
130

[De Abreu et al.,, Computers and Fluids, 2016]
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Elliptic PDEs: existence and unigueness

For a Hilbert space V consisting of functions with finite norm || - ||y, we
formulate the corresponding variational problem: find u € V, such that

a(u,v) = L(v), Yv €V, (3.16)
with a : V x V — R a bilinear form and L : V — R a linear form.

Theorem 5 (Lax-Milgram theorem). The variational problem (3.16) has a
unique solution u € V', if the bilinear form is elliptic and bounded, and the

linear form is bounded. That is, there exist constants a > 0, Cp,Cy < o0,
such that for u,v € V,

(@) a(v,v) > allly,
(@) a(u,v) < Ciflullv]vllv,
(@i)  L(v) < Callvlly.



Energy norm and stability of solutions

Partial differential equations rarely admit closed form solutions, but we can
still infer some characteristics of the solutions from the weak form (3.16).
For an elliptic variational problem, a symmetric bilinear form defines an

inner product (-,-)g = a(-,-) on the Hilbert space V, with an associated
energy norm

I llz = a(, )",

For the energy norm we can derive the following stability estimate for
the solution u € V' to the variational problem (3.16),

lullz = a(u,u) = L(w) < Cellully < (Ca/a)|ullg,

so that
[ullz < (Co/a).



Optimality of Galerkin’s method

In a Galerkin finite element method we seek an approximation U € V},
a(U,v) = L(v), Yv €V, (3.19)

with V;, C V a finite dimensional subspace, which in the case of a finite
element method is a piecewise polynomial space. For an elliptic problem,
existence and uniqueness of a solution follows from Lax-Milgram’s theorem.

Since V}, C V, the weak form (3.16) is satisfied also for v € V}, and by
subtracting (3.19) from (3.16) we obtain the Galerkin orthogonality prop-
erty,

alu—U,v) =0, YveV,.



Optimality of Galerkin’s method

For an elliptic problem with symmetric bilinear form we can show that
the Galerkin approximation is optimal in the energy norm, since

lu—Ul% = a(u—Uu—U)=a(u—Uu—v)+alu—Uv—U)
= a(u—Uu—v) < |u—Ulglu—v|g

and hence
lu—Ullg < ||lu—2v|g, Yvé& V.

For an elliptic non-symmetric bilinear form, we can prove Cea’s lemma,

|lu—Ully < %Hu—v”v, Yv eV, (3.20)
which follows from
lu—UIE < (1/a)a(u—Uu—U) = (1/a)a(u—U,u—v)
< (Gi/d)|lu =Ullv|lu—2lv.



A priori error estimation

For a Galerkin finite element method the approximation space V}, consists
of piecewise polynomial functions defined over a mesh that approximates
the domain 2 C R".

Cea’s lemma (3.20) provides an estimate of the Galerkin error in terms
of an arbitrary function v € V},, which we can choose to be an interpolant
of the exact solution v = Z"u, with

"V =V,
an interpolation operator, from which we obtain the a prior: error estimate
lu = Ullv < (Ci/a)llu — T ullv,

only in terms of the exact solution to the variational problem.



A priori error estimation

1/p
(Z |v —Ihv||€vs,p(K)> < CH = [ulyrniy, Vo € WP(Q),
K

where

MW’%P(Q) = Z ||Dau||p},p(9),
|a|=Ek



A posteriori error estimation

In contrast to an a priori error estimate which is expressed in terms of the
unknown exact solution u € V', an a posteriori error estimate is bounded in
terms of a computed approximate solution U € V},. We define a bounded
linear functional

M() = ('7¢)7

with 1 the Riesz representer of the functional M € V', guaranteed to exist
by the Riesz representation theorem. To estimate the error with respect to
M (-), we introduce an adjoint problem: find ¢ € V, such that

a(v,p) = M), YveV. (3.21)



A posteriori error estimation

An a posteriori error representation then follows from (3.16) and (3.21),
M(’U,) o M(U) = CL(’U,, QO) o CL(U, 90) = L(QD) o CL(U, 90) = T(U7 90)7 (322)

with the weak residual functional (U, ) = L(:) — a(U,-) € V', acting on
the adjoint solution ¢ € V,



Adaptive methods

With U € V,, a finite element approximation computed over a mesh 7", we
can split the integral over the elements K in 7", so that the a posteriori
error representation (3.22) is expressed as

M(u)_M(U) :T(U790) — Z T(U790)|K: Z gK:

KeTh KeTh

with the local error indicator

gK - T(U7 90)|K7

defined for each element K. To approximate the error indicator we can
compute an approximation ® =~ ¢ to the adjoint problem (3.21), so that

SK ~ ’I"(U, (I))lK



Finite element method - mesh

For a simplicial mesh 7", the global approximation space of continuous
piecewise polynomial functions V;, is spanned by the global nodal basis {¢,},
where each basis function ¢; is associated to a global vertex N;. Hence with
Dirichlet boundary conditions the finite element approximation U € V}, can
be expressed as

U)= Y UN)gi)+ Y U(N,)¢;z),
N;eNT N;eND

with N7 all internal vertices in the mesh and Np all vertices on the Dirichlet
boundary, and where U(N;) is the node which corresponds to function
evaluation at the vertex N;.




Finite element method - mesh

The finite element method takes the form of a matrix problem
Az =D, (3.24)

where a;; = a(¢;,¢:), x; = U(N,) and b; = L(¢;). To compute the Galerkin
finite element approximation, we thus have to construct the matrix A and

vector b, and then solve the resulting matrix problem (3.24) to obtain the
nodal values U(N;).




Conforming triangular mesh

Figure 10.5. Illustration of a non-conforming triangular mesh with a hanging node (left), which
can be made into a conforming mesh by adding a new edge that eliminates the hanging node (right).



Mesh generation

Figure 10.6. Mesh generation by a quadtree algorithm (left), by the Delaunay condition (center),
and by advancing front mesh generation (right).



Mesh refinement and coarsening




Stokes equations

The Stokes equations for a domain 2 C R™ with boundary VQ =T'p Uy,
and associated normal n, takes the form

—Au+ Vp=f, x €,
V-u=0, x €,

U = gp, z € I'p,
—Vu-n+pn =gy, x € 'y.

First assume that 02 = I'p and gp = 0, that is, homogeneous Dirichlet
boundary conditions for the velocity. We then seek a weak solution to the
Stokes equations in the following spaces,

V = H{Q) x ... x HY(Q) = [HXQ)]",
Q={q€ L% :/qdw=0}7

Q



Stokes equations — variational form

We derive the variational formulation by taking the inner product of the
momentum equation with a test function v € V, and the inner product of
the continuity equation with a test function g € (). By Green’s formula and
the homogeneous Dirichlet boundary condition, we obtain the variational
formulation as: find (u,p) € V x @, such that

a(u,v) +b(v,p) = (f,v), WweY, (5.6
—b(u,q) = 0, Vg € Q, (5.7

3

ov; Ow;
= (Vv,Vw) = | Vv:Vwd V:V——E L
a(v,w) = (Vv, Vw) /Q v: Vwdz, v:Vw ij=1axjaxj

b(v,q) = —(V - v,q) = — / (V- v)gda,




Stokes equations — finite element method

We seek an approximation (U, P) € V}, X @}, such that,

a(U,v) + b(v,P) = (f,v), (5.11)
—b(U,q) = 0, (5.12)
for all (v,q) € V, x @y, where V), and @), are finite element approxima-

tion spaces. There exists a unique solution to (5.11)-(5.12), under similar
conditions as for the continuous variational problem.



A posteriori error estimation

The Stokes equations take the form

Vp—Au=f, V-u=0,

together with boundary conditions fordQ =I'p UI'y UT'E
u=gp, x€l)p

u=0, xeIlrf

—Vu-n+pn=0, x€ely

Here I'p is the part of the boundary where we prescribe Dirichlet boundary conditions, I'y a part of the boundary where we apply a
homogeneous Neumann boundary condition, and I'z the part of the boundary over which we want to compute the force.

We seek a finite element approximation (U, P) € V), X O}, such that
—(P,V-v)+(VU,Vu)+(V-U,q = (f,v)

for all test functions (v, q) € 17;, X Qy,, where I}h are the test functions v suchthatv = Oforx € I'p.Here V), C V, Q) C O, Vh cvV
are finite dimensional subspaces defined over the computational mesh by finite element basis functions.



A posteriori error estimation

We consider the linear functional F : VX O — R,

F(v,q) = (v,y1)a + (@ w2)o + (Vv -n—pn,ys)r,

corresponding to weighted mean values of v and g, and the force on the surface I'r C d€2, which generates the adjoint Stokes equations
-VO-Ap =y, -V -p=yn,

together with boundary conditions that reflect the primal equations and the chosen functional.

=0, x€l)p

p=vy3; x€IlF

—Vo-n—-06nh=0, xely

The weak form of the adjoint Stokes equations take the form: find (¢, ) € V x O such that
—(@.V-9)+(Vu,Vo)+ (V- 0,0) = (v,y1)a+ (@ ¥2)a — (Vv -n—gn,y3) = F(v, q)
for all test functions (v, q) € V X Q.



A posteriori error estimation

Since the Stokes equations are linear we can express the error in the linear functional with respect to an approximation
(u,p) = (U, P)as

F(u,p) — F(U,P) =(f,9)+ (P,V-9)—(VU,V@) = (V -U,0) = r(U, P; 9, 0) = Xy £k
where we used that F'(u, p) = (f, @) since ¢ € V, with the error indicator
Ex =r(U, P; @, 0)|k,

which is the local residual on weak form with the solution to the adjoint equation as test function. The error indicator £g can
be used as an indicator for where to refine the mesh to reduce the global error as efficiently as possible.



A posteriori error estimation

Note however that since (U, P) € V' X Q is the solution of a Galerkin finite element method, if we use the approximation
(@, 0) = (@n, 0,) € Vj X Qp, the error indicators sum to zero. Hence, this sum cannot be used as a stopping criterion for
an adaptive algorithm. Instead we may use error estimates of the type

Ekx < Chx([[Veullx + [IVOrllIIRWU, P)llx
where R(U, P) = (R, (U, P), Ry(U)) is the residual of the equations in strong form, with
RU,P=f+AU-VP
RU)=V-U

n+1

) - FO) = 100 =3 [ (Fo=U's) e

F(u) - FU)| = (R(U), ) = (R(U), — mp)

n+1 n+1

= Y [ RO -me) s < 3 GRS

=1
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