DD2365/2022 — lecture 3
Navier-Stokes equations
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Non-dimensionalization — Reynolds number

The incompressible Navier-Stokes equations then takes the form
u+ (u-V)u+ Vp —vAu = f,
V-u=0,

with the kinematic viscosity v = u/p, and the kinematic pressure p

U+ (u-V)u+ Vp— Re 'Au = f,
V.-u=0.
L
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Limit cases: Euler and Stokes equations

Formally, in the limit Re — oo, the viscous term vanishes and we are
left with the inviscid Euler equations,

u+ (u-V)u+Vp=f,
V-u=0,

traditionally seen as a model for flow at high Reynolds numbers.

In the limit Re — 0, we obtain the Stokes equations as a model of
viscous flow,

V-u = 0



Nonlinear functions: linearization

Taylor’s theorem extends to functions f € C?(R™; R™), for which an affine (or linear)
approximation near € R" takes the form

f(@) = f(Z) + f(Z)(z — @),

with an approximation error of the order of ||x — Z||?. A linear approximation of a nonlinear



Nonlinear equations: fixed point iteration

Now consider a system of nonlinear equations: find x € R" such that
f(z) =0,
where f € Lip(R"), for which we form the fixed point iteration
gD = g(z®)) = ®) 1 Af(2), (8.5)

with g € Lip(R") and A € R™*" a matrix which is chosen as part of the method. We refer
to the function f(z(*)) as the residual for the approximation z(*), and we use the norm of the
residual as the stopping criterion for the fixed point iteration.

Theorem 8.13 (Banach fixed point theorem). If g € Lip(R") is Lipschitz continuous with
Lipschitz constant Ly < 1, then the fixed point iteration k1) = g(x(k)) converges to a unique
solution to the equation x = g(x).



Nonlinear equations: Newton’s method

Newton’s method to solve the equation f(x) = 0in R" is analogous to the case of the scalar
equation, but where the inverse of the derivative is replaced by the inverse of the Jacobian matrix
(f'(z®)))~L. If the Jacobian is not available in analytical form we compute an approximation,
for example, by a finite difference approximation based on the function f(z).

For a large system the Jacobian may be too expensive to compute or to hold in memory, in
which case we use a less expensive approximation. Methods based on approximations of the
Jacobian are referred to as quasi-Newton methods. The inverse Jacobian matrix is typically not
constructed explicitly, instead a system of linear equations is solved for the increment

AgE+D) = pk+1) _ (k).

with the system matrix f’(z(*)) and vector — f(z(®)).



Time discretization of initial value problem

Consider the following ordinary differential equation (ODE) for a scalar function v : [0, 7] — R,
with derivative @ = du/dt,

a(t) = flu(t),t), 0<t<T, (13.1)
u(0) = up,
which we refer to as a scalar initial value problem (IVP), defined on the interval I = [0,7] by

the function f : R x Rt — R, and the initial condition u(0) = ug. Only in special cases can
exact closed form solutions be found, instead approximation methods must be used in general.



Time discretization of initial value problem

The variable ¢ € [0, T] is often interpreted to be time, and numerical methods to solve the IVP
(13.1) can be formulated based on the idea of time stepping, where successive approximations
U (t,) are computed on a partition

O=t)y<t1 <..<tn=T,

starting from U (ty) = wug. By interpolation over each subinterval, or time step, I,, = [t,,—1,t]
of length k,, = t,, —t,,_1, we construct an approximation U (¢) for any ¢ € [0, T]. To compute the
solution at ¢t = t,,, we can use a forward difference approximation of the derivative att = ¢,,_1,

u(tn) —u(tn_1)
b ;

’[L(tn—l) ~



Forward Euler method

This is the forward Euler method for successive approximation of U,, = U (t,), given by the
update formula

Un = Up-1+ knf(Un—latn—l)-

The forward Euler method is explicit, meaning that U, is directly computable from the previous

approximation U,,_; in the time stepping algorithm. Therefore, the method is also referred to as
the explicit Euler method.



Backward Euler method

Alternatively, we can use a backward difference approximation of the derivative at t = ¢,,,

u(tn) —u(tn_1)
k,, ’

u(t,) =~
which leads to the backward Euler method, or implicit Euler method,

'U'(tn) ~ u(tn—l) + knu(tn) — u(tn—l) + knf(u(tn)7 tn)a

with the update formula
Un = Up-1+ knf(Unatn)



Backward Euler method

The backward Euler method is implicit, meaning that U, is not directly obtained from U,,_1, but
needs to be computed from the algebraic equation

z=Up_1+ knf(xv tn):
for example, by the fixed point iteration

x(k+1) =Up—_1+ knf(x(k)atn)'



Time stepping methods as quadrature rules

w(tn) = ultn) + | flu(t),t)dt,

tn—l

from which we can construct various time stepping methods by using different quadrature rules
to evaluate the integral in equation (13.3) at each time step I,,.



Euler methods as quadrature rules
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Figure 13.1. Left (left) and right (right) Riemann sums which approximate the integral of f(t),
corresponding to the explicit and implicit Euler time stepping method for approximation of the IVP (13.1)

with f(u(t),t) = f(2).



Midpoint and trapezoidal methods
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Figure 13.2. The midpoint (left) and the trapezoidal (right) quadrature rules, corresponding to
interpolation by a piecewise constant and piecewise linear function respectively.



Theta method (F/B Euler, trapezoidal,...)

ALGORITHM 13.3. f = theta_method(f, u0, t0, T, k, theta).

Input: function f, initial data u0, theta, final time T, time step k.

Output: approximation at final time u.
1: t=t0
2: whilet< T do
3:  u=newtons_method(u - u0 - k*((1-theta)*f(u) + theta*f(u0)), u0)
4 ul0=u
5: t=t+k
6: end while
7: return u



Same time stepping methods for IVP systems

Consider now a system of initial value problems, where we seek a vector function

w:[0,T] - R",
with derivative
g du_ (dw duw)"
Codt \ dt’77 dt ’

such that for a function f : RN x [0,7] — RY,

u(t) = f(u(t),t), 0<t<T, (14.1)
u(0) = uyp.



Partial differential equation: heat equation

Diffusion processes can be modelled by the heat equation,

w(z,t) — eAu(z,t) = f(z,t), (x,t) € 2 xI,
u(z,t) =0, (z,t) € 00 x I, (4.1)
u(z,0) = ug(x), z € (),

for a diffusion coefficient € > 0 and a scalar function u : Q X I — R, in the
domain 2 C R™ with boundary 0f2, and with the time interval I = (0,7].
To find an approximate solution to the heat equation, we can use semi-
discretization where space and time are discretized separately, using a finite
element method and time stepping, respectively.



Heat equation: variational form and FEM

For each t € I, multiply the equation by a test function v € V = H}(Q),
and integrate in space over {2 to get the variational formulation,

/Qu(x,t)v(x) dx + G/QVU(:I:, t)- Vu(x)dx = /Qf(x, tv(z)de. (4.2

We formulate a finite element method based on a piecewise polynomial
space V;, C V, spanned by the finite element basis functions {¢;}X,: for
each t € I find U(t) € V}, such that

/QU(CE,t)’U(x) dx + G/QVU(x, t)- Vu(z)dr = /Qf(x,t)'v(zc) dr, (4.3)

for all v € V.



Heat equation: stability estimate

By selecting the test function v = u in (4.2), we obtain

/Q’a(:z:, tu(x) dx + e/QVu(:I;, t)- Vu(z)dz = /Qf(x,t)u(a:) dz,

which is the same as

1d

1
2wl + el Val? = (f,u) < IFIl < o AP+ Sl

by Cauchy-Schwarz inequality and Young’s inequality, so that
d 1
lull? + €l Vul? < 21717,
or
T T 1 )
@+ [ 19l <l + [ CIsPa (49)

from which we find that the norm of the gradient Vu is bounded by the
data, and that with f = 0 the norm of the solution v decreases with time,
which illustrates the dissipative nature of solutions to the heat equation.



Heat equation: semi-discrete IVP system

MU(t)+ SU(t) = b(t),
with
- / 6(2)6:(2) do,

Sij = e/ﬂquj(a:) - Voi(x) dx,

bi(t) = / £ (2, 1) $i(a) da,

which is solved by time stepping for each ¢t = ¢,,, to get the approximate
solution

Uz,tn) = Un(@) = Y Usnts @)



Navier-Stokes equations: FEM

For each t > 0, we seek approximations (U(t), P(t)) € Vi X Qn, with
U(t) = (Ul(t) Ug(t) U3(t)) of the form,

N M
Ur(z,t) = ZU ()¢i(x), k=1,2,3, P(z,t) =)  P/(t)y;(z)
such that
(U,v) + c¢(U;U,v) + a(U,v) + b(v, P) — b(U, q) = (f,v),

for all (v, q) € V,, X @, where the bilinear forms are defined by (5.8)-(5.9),
with the trilinear form,

c(u;v,w) = ((u- V)v,w) = /Q(u -V)v-wdz. (5.13)



FEM semi-discretization of IVP system

Semi-discretizaton by the #-method takes the form: for each time interval
I, = (tn,_1,t,), with the time step length k, = t, — t,_1, find (U,, P,) =
(U(tn), P(tn)) € Vi X Qp, such that

i(((]m V) — (Up_1,v))+c(Ug; Uy, v)+va(Uy,v)+b(v, Py) —b(Uy, q) = (f,v),

for all (v,q) € Vi, X Qp, with
Uy = (1 — H)Un + 0Un—1, Py = (1 — Q)Pn +0P,_;.

Here e.g. 8 = 0 corresponds to the Implicit Euler method, and 6 = 0.5
corresponds to the Trapezoidal method.



Stabilization: linear transport model problem

We first consider the linear transport equation for a scalar quantity u =
u(z,t), convected by a divergence-free vector field 8 = 5(z, t),

v+ (B-Vu—eAu=f, (z,t)eQxI,
V-8=0, (xz,t) € QA x I,

with suitable initial and boundary conditions, and € > 0 a small diffusion
coefficient. To understand the basic mechanism we analyze the following
simple model problem in one space dimension,

—eu”" +u' =0, z€(0,1),
u(0) =1, u(1) =0,



Stabilization: linear transport model problem

—eu"+u' =0, z€/(0,1),
u(0) =1, u(1) =0,

for which we formulate a standard Galerkin finite element method: find

U € V}, such that,
1 1
/ eu'v' dz —l—/ vw'v dr =0,
0 0

for all test functions v € V)2, with
Vi = {v e H(0,1) : v(0) = 1,v(1) = 0},
V2 ={ve H(0,1) : v(0) = 0,v(1) = 0}.

Divide the interval (0, 1) into M uniform subintervals I; = (z;_1, ;) of
length h = z; — x;,_1, with nodes {z; i]\ia“l and associated piecewise linear
basis functions ¢; = ¢;(x).



Stabilization: linear transport model problem

Then we can write the finite element approximation as

Z“ﬂ‘f’a ) + uogo(T) + urrr1dm11(z),

with u; = u(z;) (since we have a nodal basis), and from the boundary
conditions we have that

Z u;$;(z) + ¢o(@

The discrete system takes the form Az = b, with A = (a;;), b = (b;) and

z = (z;),
a;; = /1 ed(x)p;(w) do + /1 ¢’ (z)¢i(z) dr,
b= [ Ai@ie) do+ [ o) ds



Stabilization: linear transport model problem

Equation 7 takes the form

M
S ayz; =, ey (el
p= 1L 1—1 A 9 ) A i+1 A 9 .
We observe two different regimes,

e>>h = —Z;_1t+ 21’1 — Tjy1 = O,
€e<< h= —Ti1+ Tip1 = 0,

with a combination of the two when € ~ h. In the convection dominated
case, the boundary conditions lead to two cases depending on if M is an odd

or even number; either no solution exists, or the solution oscillates between
0 and 1.



Stabilization: linear transport model problem

To obtain a finite element approximation that is close to the exact so-
lution in the convection dominated case, we stabilize the method by an
artificial diffusion € = h/2. We also refer to this as an upwind method, since
the resulting equation takes the form

—Zi—1 +2; =0,

where information is propagated from the upwind direction.



NSE: Streamline diffusion stabilization

For each ¢t > 0, find (U(t), P(t)) € Vi, X Q4, such that
(U, v)+&(U; U, v)+a(U,v)+b(v, P) =b(U, q)+51(U; U,v) +55(P, 9) = (f,v),
for all (v, q) € V}, X @y, with the stabilization terms

sl(U; U,’U) = (51(U ) V)Ua (U ) V)’U),
SQ(P, q) = (52VP, VQ),
with stabilization parameters §; ~ h/U,_; and &5 ~ h.
By choosing (v, q) = (U, P), we obtain a stability estimate of the method,
d1
LSNP+ IVvVU P+ 1Vau(U - VU + [[v/6V P =0,

where we can observe the regularizing effect of the stabilization terms.



NSE: Least squares stabilization

For each ¢ > 0, find (U(t), P(t)) € V3 X Qn, such that
(U, v)+e(U; U,v)+a(U,v)+b(v, P) =b(U, q)+51(U; U,0) +55(U, v) = (£, ),
for all (v, q) € V},, X Q4, with the stabilization terms

s1(w; U,v) = (6,(U 4 (w- VU + VP), 0+ (w - V)v + Vq)
so(U,v) = (0oV - U,V - v),

with stabilization parameters d; ~ h/U,_; and 6 ~ hU,_;.

By choosing (v, q¢) = (U, P), we obtain a stability estimate of the method,

d1 .
S IUIPHIVOVU PV 6, (U+(U-V)U+VP-vAU) P+]v/8.V U =0,



Linear dynamical system

A dynamical system describes the time evolution over a time interval I = [0, 7| of a state vector
z(k) € R™, where the index k corresponds to a sequence of snapshots in time {tx}2_,. The state
vector may represent the temperature measured at n positions, the concentration of n chemical
species in a chemical reactor, or the dynamics of a mechanical system, for example. We can
express the evolution of a linear dynamical system by the update formula

c* D) = (I — aA)z™® + ab,

where b € R" is a vector that represents data, and (I — «A) is a state transition matrix which
describes the evolution of the system, with « € Rand I, A € R™*".



Linear dynamical system

If we partition the time interval I = [0, T] into N subintervals,
0, ], o, 20, [2a, 3], ..., [(N — 1), N,
each of length o« = T'/N, we can rewrite the update formula as

p(k+D) _ (k)

a

+ Az® = b,

which takes the form of a discretized differential equation with the approximate time derivative

kD) — (k) gy

A

Q Todte




Linear dynamical system

Now, if we assume that b = 0, then the solution at time ¢ = 7T is given by

7 \V
™) = (I — ad)Nz® = (I - NA) (0.

In the limit N — oo, the solution vector converges to a state

N
Z(T) = lim ™) = lim (I — %A) 2 = exp(—AT)z?,

N—o0 N—o0

expressed in terms of the matrix exponential, which is defined for a general n X n matrix B by

>0 1 1 \Y
n5)= 5 "= g (1+38)"
k=0



Stability of linear dynamical system

If the matrix A is non-defective, then
A=XAX"1

where A is a diagonal matrix with the eigenvales A; € C on the diagonal, and X is an invertible
matrix which holds the corresponding eigenvectors as columns. If A is normal then X is a unitary
matrix, else the eigenvectors are linearly independent but not mutually orthogonal.

By the power series definition of the matrix exponential (7.21), and the property of inverse
matrices, the exponential acts directly on the diagonal matrix A,

exp(—)\lT) 0
exp(—AT) = Xexp(—AT)X ' =X X1



Stability of linear dynamical system

exp(—A17T) 0
exp(—AT) = Xe MX =X X1
0 exp(—A,T)

exp(~\T) = exp(~(Re(Ay) + iIm(\,))T)
= exp(Re(—A;T)) exp(iIm(—\,;T)).

Here, the positive real parts Re()\,) correspond to decay, whereas the negative real parts represent
growth. The imaginary parts of the eigenvalues Im();) do not change the size of the initial data
since

|exp(im();))| = 1.



Symmetric positive definite matrix

Example 7.12. Consider the dynamical system (7.19) with b = 0, and a real symmetric positive

definite matrix
2 -1
=[5 5],

which models diffusion processes, such as heat conduction. Compare A to a discretization of
the Poisson equation (5.27), see Example 5.10. The matrix A has two real positive eigenvalues
A1 = 3 and Ay = 1, with associated eigenvectors

1 1
W= _—@1,-1)T, @ =—@1,1)T
v =g e =L

which implies that the initial data will dissipate with time at an exponential rate,
Z(T) = lim ™
N —o0
1 1 exp(—3T) 0 1 -1 (0)
-1 1 0 exp(—1T) || 1 1 |*

exp(—3T) +exp(—T) —exp(—3T) + exp(—T1) ] (0
| —exp(—3T) +exp(-T) exp(—3T)+ exp(-T) '

N[ DN =




Diffusion and heat conduction




Skew-symmetric normal matrix

Example 7.13. The skew-symmetric normal matrix

0 1
=[50
has the complex conjugate eigenvalues \; = % and Ay = —%, with associated eigenvectors
1 1
1) — = (1 T 2) _ AT
T\ = 1,2)", x\¥ = 1,—12)".
\/5( ) ﬁ( )

Therefore, the state vector at time ¢ = 7' is given by
_ . 11 1 exp(—iT) 0 1 —i
— (N) — = p (0)
Z(T) = lim z 5 [ P ] [ 0 exp(iT) ] _ : ]iB

_ [ exp(—iT) + exp(iT)  i(exp(iT) — exp(—iT)) | (o)
i(exp(—iT) — exp(iT))  exp(—iT) + exp(iT) '




Vortex and wave propagation




Defective matrix

Example 7.14. To compute the matrix exponential of the following defective matrix

1 & 10 0
A‘[o 1]_[0 1]+{0 0}_I+N’

we use the property that exp(A) = exp(/ + N) = exp([) exp(IN). The matrix N is nilpotent,
meaning that N9 = ( for all integers ¢ > 1. Hence, by the power series definition of a matrix
exponential (7.21),

exp(N) =1+ N,

which implies that the asymptotic state of the system Z(7T") = limy _, o z(N) is given by

Z(T) = exp(—AT)z®) = exp(—IT) exp(—NT)z® = exp(—IT)(I — NT)z®

([0 wwtn |10 ety [0 o))

_ [ eXp(O—T ) _He€§?gg“3T) }x(m_



Transition to turbulence
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Laminar flow
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Turbulent flow
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Turbulent flow (observed with an electric spark)



Nonlinear dynamical system

Now consider a nonlinear dynamical system for the state vector x € R" over a time interval
I = [0, T, described by the formula

g F D) = g *) 1 o f(2®), (8.6)

with f : R™ — R"™ a nonlinear function, and where the parameter « = T/ N represents the time
step length for a partition of the interval [ into N subintervals. We note the similarity with the
fixed point iteration (8.5) for the matrix A = «f, where the solution z* to the equation

f(z*) =0

represents a steady state, or equilibrium point, of the dynamical system (8.6).



Linear stability analysis

To investigate the stability of the steady state we add a small perturbation ¢ to £* and compare
the evolution of y(¥) from the perturbed initial state

y© =2z* + ¢,

to the evolution of z(¥) with initial state z(®) = x*. Then by Taylor’s formula the evolution of
the perturbation ¢*) = y(*) — z(k) can be approximated by the linear dynamical system

e +D) — B L o(F(y®) = F2®)) x o® 1 af (z%)e® = (I + af'(z*)e®, (8.7)

with the Jacobian f’(z*) linearized at the steady state x*, and (I + af’(z*)) acting as the state
transition matrix



Navier-Stokes equations

Example 8.17 (Navier-Stokes equations). Fluid dynamics is governed by the Navier-Stokes
equations, a nonlinear dynamical system that describes the evolution of the scalar pressure
p(z) € R and the velocity vector u(x,t) € R® for each spatial point z € R> and time ¢ > 0.




Triple decomposition of velocity gradient

Vu= Q' (Vu)g + (Vi) gz + (Vi) ) Q

o
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Triple decomposition of velocity gradient

Vu= Q' (Vu)g + (Vi) gz + (Vi) ) Q

u(x) ~ u(xo) + Vu(xo)(x — xo)

= uc + uEL(x) + uRR(x) + USH(x) uEL(x)

. x3 -, Ugr(x)
NS e
“/v/. X &ﬂ X




Linear stability analysis

Due to the incompressibility of the flow, corresponding to a zero trace Jacobian, an immersed
object causes local acceleration and retardation, specifically at attachment and separation of the
flow. Separation of the flow from an object like the wing of an airplane could be assumed to
locally be an ideal two dimensional flow of the form

useparation(a:) — (331, _x2)T>

1 0
ulseparation(x) — [ 0 —1 ] :

But since one of the eigenvalues of the Jacobian is positive, this two dimensional flow is unstable
and will never manifest itself. Instead a pattern of stable vortices establish at separation, see the
trailing edge of the wing in Figure 8.7,




Linear stability analysis

With z; the main flow direction, a vortex normal to the flow can be described in the x5x3

plane by the velocity vector 3
Uyortex (ZL‘) = (—5U3, $2)T? .
| | I
which leads to the Jacobian &y X,
/ 0 —1 4 3
uvorte:z:( ) — 1 0 ) i

which has purely imaginary eigenvalues, hence, a stable structure with no perturbation growth.



Linear stability analysis

Shear flow in the ;x5 plane takes the form

X2

usheafr‘(x) — (LL’Q, 0)T7

0 1 X
u;hear(x) — |: 0 O ] ’

a defective matrix with transient growth of perturbations. Therefore, in shear flow we can expe-
rience the phenomenon of transition to turbulence, where perturbations slowly grow in a laminar
shear flow until the accumulative effect is that the flow transitions into a chaotic turbulent flow,
illustrated in Figure 8.7 by the rising smoke from a candle.



Navier-Stokes equations

The incompressible Navier-Stokes equations then takes the form,
u+ (u-V)u+ Vp —vAu = f,
V-u=0,

with the kinematic viscosity v = u/p

No slip boundary condition: u = 0
Slip boundary conditions: u - n = 0
Friction boundary conditions: n’ ot; = Bu - t;

Outflow boundary conditions: nTo = 0



Incompressible flow — attachment point

V.-u=90

L

axz_ dxq
X

[Water and aluminum dust.]



Incompressible flow —boundary layer

*V.-u=90

*uy = f(x2)

*uU, =0
xzu—’

[Water and aluminum dust.]




Cylinder (Re = 0.16) — separation point

V.-u=90

L

axl_ dx,
X2

[Water and aluminum dust.]



Cylinder (Re = 26) — 2 separation points

eV-u=20

. ou;  0duy

0x4 dx,

X7 .

I '.' e " = "" ._- - ,T{'
/'/V x1 : (j” e o '
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[Oil and magnesium.]



Cylinder (Re = 26) — 2 vortices

eV-u=20
*u; = fx)
* Uy = g(xq1)

ZN\8
<

[Oil and magnesium.]




Cylinder (Re = 300) — Karman vortex street

[Wind and smoke.]



Lab 2 — velocity vector field
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Lab 2 —scalar pressure field
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Lab 2 — lift force on cylinder
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Lab 2 — lift force on cylinder

[Wind and smoke.]
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Lab 2 — Strouhal number
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Lab 2 —drag force on cylinder
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Lab 2 —drag force on cylinder

I

ﬂ 165.
—ce, \J

160 -

T

[Wind and smoke.] 145 1 15 20 %5




[https://en.wikipedia.org/wiki/Vortex_shedding#/media/File:SchornsteinwendelSKL.jpg]

Karman vortex streets
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[https://en.wikipedia.org/wiki/Vortex_shedding#/media/File:Heard_Island_Karman_vortex_street.jpg]



Cylinder (Re = 2000) — shear layer

——

[Water and air bubbles.]



Cylinder (Re = 2000) — 3D turbulent wake

[Water and air bubbles.]
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Re = 10 000 — turbulent shear layers

[Water and air bubbles.]



Simulation of airflow past landing gear

[De Abreu et al.,, Computers and Fluids, 2016]



Acoustic sources and turbulent vortices

Lighthill (db)
130

[De Abreu et al.,, Computers and Fluids, 2016]



Sphere: Re = 15 000 vs 30 000
turbulent boundary layers (drag crisis)




Sphere: Re = 15 000 vs 30 000
turbulent boundary layers (drag crisis)




Sphere: Re = 15 000 vs 30 000
trip wire —to trigger turbulent boundary layer




Sphere: Re = 15 000 vs 30 000
trip wire —to trigger turbulent boundary layer

[https://en.wikipedia.org/wiki/Golf_Ball#/media/File:Golf Ball.jpg]
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