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Finite element method: Poisson equation

We now consider the Poisson equation for a function u : R™ — R,
—Au=f, in ), (3:1)

with the domain (2 C R”, and f : R® — R given data. The Poisson equation

For the equation to have a unique solution we need to specify boundary
conditions. We may prescribe Dirichlet boundary conditions,

ulae = 9p, (3.2)

Neumann boundary conditions,

Vu-nlsa = gn, (3.3)

or a linear combination of the two, referred to as a Robin boundary condition,

Vu - ’I’L|aQ = a(u|ag - gD) + gn, (34)

with a(x) a given weight function.



Homogeneous Dirichlet bc

With homogeneous Dirichlet boundary conditions, we have the problem

—Au=f, inQ,
u=0, on Of. (3.5)

To make the problem statement precise, let the trial and test functions
belong to a certain function space V. With V = H}(Q) we obtain the
following variational formulation: find v € V, such that

(Vu, Vo) = (f,v), Yv eV, (3.6)

since the boundary term vanishes as the test function is an element of the
vector space Hj ().



Homogeneous Neumann bc

—Au = f, in €2,
Vu-n=0, on 0. (3.7)

With V = H'(Q) we have the following variational formulation: find
u € V, such that

(Vu, Vv) = (f,v), YveV, (3.8)

However, it turns out that the variational problem (3.8) has no unique
solution, since for any solution v € V, also u + C' is a solution, with C' € R
any constant. To ensure a unique solution, we need an extra condition for

the solution which determines the arbitrary constant, for example, we may
change the trial space to

V={ueH(Q): / u(z) dz = 0}. (3.9)

Q



Galerkin Finite Element Method

To formulate a Galerkin method for the Poisson equation we replace the
Hilbert space V' by a finite dimensional subspace V}, C V in the variational
formulation of the equation. We hence seek U € V},, such that

(VU,Vv) = (f,v), Yv eV, (3.13)

For a simplicial mesh 7", the global approximation space of continuous
piecewise polynomial functions V, is spanned by the global nodal basis {¢,},
where each basis function ¢; is associated to a global vertex /N;. Hence with
Dirichlet boundary conditions the finite element approximation U € V}, can
be expressed as

U)= > UN)¢i(@)+ Y UN;eix),
N;eNT N;eND

with N7 all internal vertices in the mesh and Np all vertices on the Dirichlet
boundary, and where U(N,) is the node which corresponds to function
evaluation at the vertex IV;.




FEM for general variational problem

For a Hilbert space V' consisting of functions with finite norm || - ||, we
formulate the corresponding variational problem: find u € V, such that

a(u,v) = L(v), Yv eV, (3.16)
with a : V x V — R a bilinear form and L : V — R a linear form.

The finite element method takes the form of a matrix problem
Az = b, (3.24)

where a;; = a(¢;, ¢:), x; = U(N;) and b; = L(¢;). To compute the Galerkin
finite element approximation, we thus have to construct the matrix A and

vector b, and then solve the resulting matrix problem (3.24) to obtain the
nodal values U(N;).




FEM for general variational problem

The finite element method takes the form of a matrix problem
Az = b, (3.24)

where a;; = a(¢;, ¢i), z; = U(N;) and b; = L(¢;). To compute the Galerkin
finite element approximation, we thus have to construct the matrix A and
vector b, and then solve the resulting matrix problem (3.24) to obtain the
nodal values U(N;).

In the case of Dirichlet boundary conditions, the rows in the matrix
corresponding to boundary nodes N; € Np are replaced by a row with
one on the diagonal and with all other components zero. To enforce the
Dirichlet boundary condition, each corresponding vector component is then
set to the interpolated Dirichlet boundary value b; = Z"gp(N;).




FEM for general variational problem

The boundary nodal values are given by the interpolated Dirichlet bound-
ary condition U(N;) = Z"gp(N;), for all N; € Np. Hence, if we order the
nodes so that the boundary nodes have the highest indices, the matrix
problem (3.24) has a block structure,

Arr | Amp Ty bs

Opr ‘ Ipp Ip bp

where A;; is a square n; X ny matrix, with n; the number of internal nodes,
Arp an n; X np matrix, with np the number of boundary nodes, Ipp an
np X np identity matrix, Op; an np X n; zero matrix, and bp is an np
vector with components (bp); = Z"gp(N;).




Assembly algorithm

The matrix and vector are constructed by an assembly algorithm, which
loops over all elements K in the mesh to compute the local element matrices
A¥ = (af), with

az{{j - a’()\j) )"i)|K7

and the local element vector

bi* = L(\)|xk,
with a(-,-)|x and L(-)|x the bilinear and linear forms restricted to element
K, and with {)\i}:-;"l_l the element shape functions, for example, local La-
grange basis functions over K. The integrals are often approximated by
quadrature over a reference element K, based on a map Fx : K — K.

Algorithm 1: Assembly of matrix A = (a; ;) and vector b = (b;)

for K € T" do
for i=0,1..,n,—1do
b = LW x
brocagionsy += bi
end
for i =0,1...,n,— 1 do

for j =0,1,..,n,— 1 do
afy = a(d, M)k
Qloc2glob(i),loc2glob(j) += afj
end

end
end

> compute element vector
> add to global vector

> compute element matrix
> add to global matrix




Assembly algorithm

To add the local element matrix and element vector to the global matrix
and vector, we use an index map

loc2glob : ix — 14,

which maps the index of each local degree of freedom i € ik, to the corre-
sponding index in the global matrix loc2glob(i) € i4.

Algorithm 1: Assembly of matrix A = (a; ;) and vector b = (b;)

for K € T" do
for i=0,1..,n,—1do
b = LX)l
brocagionsy += bi
end
for i =0,1...,n,— 1 do
for j =0,1,..,n,— 1 do
afy = a(d, M)k
Qloc2glob(i),loc2glob(j) += afj
end
end
end

> compute element vector
> add to global vector

> compute element matrix
> add to global matrix




Assembly algorithm

Algorithm 1: Assembly of matrix A = (a; ;) and vector b = (b;)

for K € T" do
for:=0,1...,n,—1do
bf{ = L()‘i)|K
bloc2glob(z’) += bf{
end

fori=0,1...,n,—1do

for j =0,1,...,n,—1do
a'z{{j - a’()‘j7 )‘Z)lK
Qloc2glob(i),loc2glob(3) += a’{fj
end

end
end

> compute element vector
> add to global vector

> compute element matrix
> add to global matrix




Existence and uniqueness

We can express a general linear partial differential equation as the abstract
problem,

A(u) = f, in Q, (3.14)
with boundary conditions,
B(u) =g, on 09. (3.15)
For a Hilbert space V' consisting of functions with finite norm || - ||y, we
formulate the corresponding variational problem: find u € V, such that
a(u,v) = L(v), Yv eV, (3.16)

with @ : V XV — R a bilinear form and L : V — R a linear form.



Existence and uniqueness

Theorem 5 (Lax-Milgram theorem). The variational problem (3.16) has a
unique solution u € V, if the bilinear form is elliptic and bounded, and the

linear form is bounded. That s, there exist constants o > 0, C;,Cy < 00,
such that for u,v € V,

(@) a(v,v) = evlly,
(@)  alu,v) < Ciljullv]v]lv,
(@i)  L(v) < Gofjv]lv.



Ex: linear reaction-diffusion equation

—Au—+u=f, in €2,
u =0, on 0f).

The corresponding bilinear form,
a(u,v) = (Vu, Vv) + (u,v),

is elliptic in Hj(Q) with a = 1, since ||v||? = a(v,v), and continuous with
C1 = 1 by Cauchy-Schwarz inequality,

a(u,v) = (Vu, V) + (u,v) < [[Vul[[[Vol] + [lufl|v]] < flufl1]v]l-

With f € H~}(), the linear form is continuous with Cy = ||f||-1, and
hence the variational problem has a unique solution.



Energy norm and stability of solutions

Partial differential equations rarely admit closed form solutions, but we can
still infer some characteristics of the solutions from the weak form (3.16).
For an elliptic variational problem, a symmetric bilinear form defines an
inner product (-,-)g = a(-,-) on the Hilbert space V, with an associated
energy norm

I-le = a(-,)"2

which is equivalent to the norm (-,-)y, since

af Iy < () < Cill - Iy



Energy norm and stability of solutions

For the energy norm we can derive the following stability estimate for
the solution u € V' to the variational problem (3.16),

lullz = a(u,u) = L(u) < Cellully < (Ca/a)l|ullg,

so that
Jullz < (Co/a).



Stability of Poisson’s equation

For the Poisson problem (3.6), ||[Vu|| < C||f||, which follows from

C? 1
IVall® = (f,0) < fllllull < CIANIVUl < 1P+ SVl

where we used Cauchy-Schwarz inequality, Poincaré-Friedrich inequality,
and the following version of Young’s inequality.

Theorem 6 (Young’s inequality). For a,b >0 and € > 0,

1 €
b< —a?+ —b2,
=gty

Theorem 4 (Poincaré-Friedrich’s inequality). For all u € H(Q) there
ezists a constant C' > 0, such that

lullZ2@) < CllullZ2@n) + VUl g)-



Optimality of Galerkin’s method

In a Galerkin finite element method we seek an approximation U € V},
a(U,v) = L(v), Yv €V, (3.19)

with V;, C V a finite dimensional subspace, which in the case of a finite
element method is a piecewise polynomial space. For an elliptic problem,
existence and uniqueness of a solution follows from Lax-Milgram’s theorem.

Since V}, C V, the weak form (3.16) is satisfied also for v € V}, and by
subtracting (3.19) from (3.16) we obtain the Galerkin orthogonality prop-
erty,

alu—U,v) =0, YveV,.



Optimality of Galerkin’s method

For an elliptic problem with symmetric bilinear form we can show that
the Galerkin approximation is optimal in the energy norm, since

lu—Ul% = a(u—Uu—U)=a(u—Uu—v)+alu—Uv—U)
= a(u—Uu—v) < |u—Ulglu—v|g

and hence
lu—Ullg < ||lu—2v|g, Yvé& V.

For an elliptic non-symmetric bilinear form, we can prove Cea’s lemma,

|lu—Ully < %Hu—v”v, Yv eV, (3.20)
which follows from
lu—UIE < (1/a)a(u—Uu—U) = (1/a)a(u—U,u—v)
< (Gi/d)|lu =Ullv|lu—2lv.



Poisson’s equation: diffusion

* Examples: Jupyter notebook?



Non-dimensionalization — Reynolds number

The incompressible Navier-Stokes equations then takes the form
u+ (u-V)u+ Vp —vAu = f,
V-u=0,

with the kinematic viscosity v = u/p, and the kinematic pressure p

U+ (u-V)u+ Vp— Re 'Au = f,
V.-u=0.
L
Rer—

v



Limit cases: Euler and Stokes equations

Formally, in the limit Re — oo, the viscous term vanishes and we are
left with the inviscid Euler equations,

u+ (u-V)u+Vp=f,
V-u=0,

traditionally seen as a model for flow at high Reynolds numbers.

In the limit Re — 0, we obtain the Stokes equations as a model of
viscous flow,

V-u = 0



Incompressible flow

* Approximate small M by M = 0.
* Density constant

* Velocity divergence free: V-u =0

ou ou
¢ 2 = ——4 Xy .
axZ axl

[Water and air bubbles.]




Reynolds number Re =0.16

[Water and aluminum dust.]



Stokes equations

The Stokes equations for a domain (2 C R™ with boundary VQ2 =T'p UT'y,
and associated normal n, takes the form
—Au+ Vp=f, x € (),
V-u=0, x €,
U = gp, x € I'p,

—Vu-n+pn =gy, x €l'y.



Stokes equations

First assume that 02 = I'p and gp = 0, that is, homogeneous Dirichlet
boundary conditions for the velocity. We then seek a weak solution to the
Stokes equations in the following spaces,

V = HNQ) x ... x H(Q) = [H ()],
Q={ae ") [ qds =0},

where the extra condition in the vector space Q is needed to assure unique-
ness of the pressure, which otherwise is undetermined up to a constant.



Stokes equations

We derive the variational formulation by taking the inner product of the
momentum equation with a test function v € V, and the inner product of
the continuity equation with a test function ¢ € (). By Green’s formula and
the homogeneous Dirichlet boundary condition, we obtain the variational
formulation as: find (u,p) € V' x @, such that

a(u,v) +b(v,p) = (f,v), YweV, (5.6)
—b(u,q) = 0, Vg € Q, (5.7)
a(v,w) = (Vv, Vw) = / Vo : Vwdz, (5.8)

b(0,0) = ~(V - v,0) = - [ (V-v)qda, (5.9



Stokes equations

Theorem 7. The variational problem (5.6)-(5.7) has a unique weak solu-
tion (u,p) € V x Q, which satisfies the following stability inequality,

[ullv +llglle < Cllfll-,
iof the following conditions hold,
(i) a(-,-) is bounded and coercive, i.e. that ezists a constant o > 0,
a(v,v) > allvlly,
forallve Z={veV:bv,q) =0,Vqe€Q},

(ii) b(-,-) is bounded and satisfies the inf-sup condition, i.e. there ezists a
constant 3 > 0,
b(v
inf sup #

€@ vev [v]lvllalle

> f.



Stokes equations

We now formulate a finite element method for solving Stokes equations.
Since we use different approximation spaces for the velocity and the pres-
sure, we refer to the method as a mixed finite element method.

We seek an approximation (U, P) € V}, X Q4, such that,

aU,0) +bw,P) = (f0), (5.11)
“bU,q) = O, (5.12)
for all (v,q) € Vj, X Qp, where V}, and @), are finite element approxima-

tion spaces. There exists a unique solution to (5.11)-(5.12), under similar
conditions as for the continuous variational problem.



Stokes equations

Theorem 8. The mized finite element problem (5.11)-(5.12) has a unique
solution (U, P) € Vi, X Qy, if

(i) a(-,-) is coercive, i.e. that exists a constant oy, > 0, such that
a(v,v) 2 anllv]lv,
for allv e Z, ={veV,:b(v,q) =0,Yq € Qn},

(i1) b(-,-) satisfies the inf-sup condition, i.e. there ezists a constant B, > 0,

b
inf sup 7(?)’ ?)

> Bh
9€QR vV}, ||U”V||Q||Q 7

and this unique solution satisfies the following error estimate,

u—Ully+|p—Pllo <C| inf |lu—v|+ inf ||p— ,
= Ul + 9= Pllo < € ( g vl + nf 1ol

for a constant C' > 0.



Stokes equations

The pair of approximation spaces must be chosen to satisfy the inf-sup
condition, with the velocity space sufficiently rich compared to the pres-
sure space. For example, continuous piecewise quadratic approximation of
the velocity and continuous piecewise linear approximation of the pressure,
referred to as the Taylor-Hood elements. On the other hand, continuous
piecewise linear approximation of both velocity and pressure is not inf-sup
stable.



Stokes equations

We seek finite element approximations in the following spaces,

N
Vi, = {v = (v1,v2,v3) : vk(x) = Zviqu(x), k=1,2,3}
j=1

M
Qn=1{g:4(@) =) _ dv;(x)},
j=1
which leads to a discrete system in matrix form,

o ol bl =1

with u and p vectors holding the coordinates of U and P in the respective
bases of V), and Q.



Stokes equations

The matrix A is symmetric positive definite and thus invertible, so we
can express

u = A_l(f _ Bp)7
and since BTu = 0,
BTA'Bp = BTA"f,

which is the Schur complement equation. If null(B) = {0}, then the matrix
S = BT A~ B is symmetric positive definite and can also be inverted.



Stokes equations

Schur complement methods take the form

pr=pr_1 — C H(B"A™'Bp,_, — BTA7'f),

where C'~! is a preconditioner for S = BT A='B. The Usawa algorithm is
based on C~! as a scaled identity matrix, which gives

1. Solve Aux = f — Bpi_1,

2. Set pr, = pr—1 + aBTuy.



Stokes equations

Approximation spaces of equal order is

possible, by stabilization of the
standard Galerkin finite element method:

find (U, P) € V}, X @y, such that,
a(Uv) +b(v, P) = (f,v),
_b(U7 Q) + 8(P7 Q) = 0

Y

for all (v, q) € Vi, X Qp, where s(P,q) is a pressure stabilization term. The
resulting discrete system takes the form,

5 s = o]

where the stabilization term is chosen so that the matrix S is invertible.



Stokes equations

For example, the Brezzi- Pitkaranta stabilization takes the form,
s(P,q) = C/ h*VP -Vqdz,
Q

with C > 0 a constant.



Stokes equations: Labl

* Jupyter notebook



