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Who am I?

* Professor of numerical analysis ( o
* Research: fluid dynamics, medicine, renewable energy,... Wi

* https://www.kth.se/profile/jhoffman L



https://www.kth.se/profile/jhoffman

This course

Theory and labs (weeks 1-5)
* Mathematical model of fluid flow: Navier-Stokes equations

* Numerical approximation of Navier-Stokes equations
* Computer simulation of fluid flow

Project work (weeks 6-11)
* Research question

e Simulation experiments

* Analysis and conclusion



This course

Computer simulation of fluid flow

* Mathematical model: Navier-Stokes equations

 Numerical approximation: Finite Element Method (FEM)

* Computational platform: FEniCS Jupyter notebooks & Google Colab

* Course (open) GitHub repository:

https://github.com/johanhoffman/DD2365 VT22



This course

Labs

1. Stokes equations (viscous flow)

W N

Navier-Stokes equations
Adaptive finite element methods
Fluid-structure interaction



Today

 Vector calculus

* Function spaces

e Conservation laws

* Finite element method

[Lecture notes, chapters 1-3]



Function spaces: continuous functions

For 2 C R™, we define the set of functions with k£ continuous derivatives,
CH(©) = {¢: D% € C(Q), || <k},

with C(Q) = C°(Q) and C*(Q) = NL,C*(Q). The subset CF() consists
of the functions ¢ € C*(Q) that have compact support in €, that is, the
support

supp(¢) = {z € Q: ¢(x) # 0},

is closed and bounded.

D; = 0/0z; is the differential operator of partial differentiation



Differential operators in R"

The gradient of a scalar function f € C*() is denoted by
grad f = Vf = (D:f,..., Do f)",
or in index notation D;f, with the nabla operator
V = (Dy,...,D,)".

Further, the directional derivative V, f, of f in the direction of the vector
field v : R™ — R", is defined as

V,f = (v'v)f:ijjf'



Differential operators in R"

For the C*(2) vector field F' : R® — R™, we define the Jacobian J,

D\F, --- D,F; (VF)T
D\F, --- D,F, (VE,)T

with directional derivative

V,F = (v-V)F = Jv =v;D,F,.



Differential operators in R"

For a scalar function f € C%(R"), we define the Laplacian

Af=V2f=VIVf=V.Vf=Df+..+ D2f = Df,

The vector Laplacian of a C?*(Q) vector field F' : R — R", is defined as

AF = V2F = (AF,, ..., AF,)",



Gauss theorem

For a C'(Q) vector field F : R™ — R", we define the divergence

OF;
8$i ’

The divergence can be interpreted in terms of Gauss theorem, which
states that the volume integral of the divergence of F' in 2 C R", is equal
to a surface integral over 0f) of F' projected in the direction of the unit
outward normal n of 0f2,

/V-Fda:z/ F -nds,
Q o0

with the surface integral defined by a suitable parameterization of 0f2.



Function spaces: integrable functions

For 2 C R™ an open set and p a positive real number, we denote by LP(€2)
the class of all Lebesgue measurable functions u defined on (2, such that

/ lu(z)|P dz < oo,
Q

where we identify functions that are equal almost everywhere in ().
LP(Q) is a Banach space for 1 < p < 0o, with the norm

1/p
[ul| e () = (/Q IU(x)Ipdaf) .

In the case of a vector valued function u : R® — R™, we replace the
integrand in the definitions by the [P norm, and for a matrix function u :
R" — R™** 4 generalized Frobenius norm

>3 lus @)



Function spaces: integrable functions

Theorem 3 (Holder’s inequality for LP(2)). Let 1 < p,q < o0 and 1/p +
1/g=1. If f € LP(Q) and g € LY(R) then fg € L'(Q), and

Ifglls < M1 1lpllglla-

L?(Q) is a Hilbert space with the inner product

(u,v) = (w,v) L2 = / u(z)v(z) dr, (2.1)

Q

which induces the L?(2) norm. For vector valued functions the integrand is
replaced by the [, inner product, and for matrix functions by the Frobenius
inner product. In what follows, we let || - || = || - || z2()-



Function spaces: Sobolev spaces

To construct appropriate vector spaces for partial differential equations, we
extend the LP spaces with derivatives. We first define the Sobolev norms,

1/p

lullep =1 D 1Dl |

0<|o|<k
for 1 < p < o0, and

[ullk,co = max || DL (e,
0< ol <k

where Du refers to weak derivatives. Equipped with the Sobolev norms,
we then define the Sobolev spaces,

WHFP(Q) = {u € LP(Q) : D*u € LP(Q), 0 < |a| < k},

for each positive integer k and 1 < p < oo, with W?(Q) = LP(Q).



Function spaces: Sobolev spaces

The Sobolev spaces H*(Q) = W*2(Q) and H5(Q) = W ?(Q) are Hilbert
spaces with the inner product and associated norm

(u’ U)k - Z (Dau7DaU)7 ”u”k = (u> u)llc/27

0<a<k
for which Cauchy-Schwarz inequality is satisfied,
[ (w, 0)i| < lullkllvle-

We denote by H*(Q) the dual space of H}(Q), with the norm

luf o= sup O g @),
vers@ Ve vems@:ole=t

satisfying a generalized Holder inequality for u € H*(Q) and v € H{(Q),

|(w, 0)| < flul[ &[]l



Partial integration/Green’s theorem

For a scalar function f : R® — R, and a vector function F' : R® — R",
we have the following generalization of partial integration over a domain
2 C R", referred to as Green’s theorem,

(Vf,F)=—(f,V-F)-I—(f,F-n),

with n the unit outward normal vector for the boundary 0f2, and where we
use the notation

(v, w) = (v, w)r2(50) (2.2)
for the boundary integral. With F' = Vg and g : R® — R a scalar function,



Conservation laws

Consider an arbitrary open subdomain w C R™. For a time ¢ > 0, the total n
flow of a quantity with density ¢(z,t) through the boundary dw is given by x5)
u(x
0w ’

ou - nds,
ow

where n is the outward unit normal of dw, and u = u(z,t) is the velocity
of the flow. The change of the total quantity ¢ in w is equal to the volume
source or sink s = s(z,t), minus the total flow of the quantity through the

boundary Ow,

/qﬁwt ¢u nds-l—/ws(x,t)dx



Conservation laws

5 [s@vdo == [ unds+ [ siat)da,
dt w aw w

Gauss’ theorem
)

/w (%qb(x,t) 4V - (¢u) — s) dz =0,

and assuming the integrand is continuous in w, we are lead to the general
conservation equation .

¢+ V- (pu) —s=0, (5.1)
for t > 0 and x € w, with w C R™ any open domain for which the equation
is sufficiently regular.



Conservation of mass

Now consider the flow of a continuum with p = p(x,t) the mass density of
the continuum. The general continuity equation (5.1) with ¢ = p and zero
source s = 0, gives the equation for conservation of mass

p+V-(pu)=0.
We say that a flow is incompressible if
V.u=0,

or equivalently, if the material derivative is zero,

Dp .
E—p—l—u-Vp—O,

since

D
O=p+V-(pu)=F§+pV-u.



Conservation of momentum

Newton’s 2nd Law states that the change of momentum pu over an arbitrary
open subdomain w C R"™, is equal to the sum of all forces, including volume

forces,
/ pfdz,

for a force density f = f(z,t) = (fi(z,t), ..., fu(z,t)), and surface forces,

/ n-ods,
ow

with the Cauchy stress tensor o = o(x,t) = (0;;(z,t)), and where we define

n-o =n'o = (0jn;). Gauss’ theorem gives the total force as

Lpfdw+[9wn-ads=/w(pf+V-0)d:c.



Conservation of momentum

The general continuity equation with ¢ = pu, and the source given by
the sum of all forces, leads to the equation for conservation of momentum

%(pu)+V-(pu®u)=Pf+V°Ua (5.2)

with u ® u = uu”, the tensor product of the velocity vector field u. With
the help of conservation of mass, we can rewrite the left hand side as

2 (o) 4 V- (pu®u) = -+ V - () + plis + (u- V) = pli-+ (u- V),

so that
p(t+ (u-Vu) =pf+V-o. (5.3)

We say that (5.2) is an equation on conservation form, whereas (5.3) is on
non-conservation form.



Conservation of momentum

We define the mechanical pressure as the mean normal stress,

1 1

Pmech = _g tr(a) - _5117

and the deviatoric stress tensor T = 0 + Pmecnd, with tr(7) = 0, such that
0 = _pmechI + T,
and we can write conservation of momentum as

p(i+ (u-V)u) =pf — VPmeern + V - T.



Newtonian flow

To determine the deviatoric stress we need a constitutive model of the
fluid. For a Newtonian fluid, the deviatoric stress depends linearly on the
strain rate tensor

_I_
8ccj 6517@
with 7 = 2ue, where p is the dynamic viscosity, which we here assume to

be constant.
The incompressible Navier-Stokes equations then takes the form,

U+ (u-V)u+ Vp —vAu = f, (5.4)
V-u=0, (5.5)

with the kinematic viscosity v = u/p, and the kinematic pressure p =
pmech/p-



Non-dimensionalization

w=llu;, p=Pp;, w=Lm, [F=Ff, t=T%,

where U, P, L, T are characteristic scales of the velocity, pressure, force,
length and time, respectively. The resulting non-dimensionalized differen-
tial operators are scaled as,

g 190 1 1
ot " Tons Y oL'v STt
which gives
U o U2 P vU
?at*u* + f(u* . V*)U* v Ev*p* - 12 A*u* — Ff*,

%V-u*zo,



Non-dimensionalization

i+ (u-V)u+Vp— Re 'Au = f,

V-u=0.
Here we have dropped the non-dimensional notation for simplicity, with
2
T=L/U P=U? F-= Uf Re = @,
v

where the Reynolds number Re determines the balance between inertial
and viscous characteristics in the flow. For low Re linear viscous effects
dominate, whereas for high Re we have a flow dominated by nonlinear
inertial effect, and turbulence for sufficiently high Reynolds numbers.



Limit cases: Euler and Stokes equations

Formally, in the limit Re — oo, the viscous term vanishes and we are
left with the inviscid Fuler equations,

t+ (u-V)u+Vp=f,
V-u=0,

traditionally seen as a model for flow at high Reynolds numbers. Alt

In the limit Re — 0, we obtain the Stokes equations as a model of
viscous flow, now with P = vU/L and F = vU/L?,

V-u = 0,



Anatomy of fluid flow

* Density p
* Velocity u
* Pressure p

* Viscosity (dynamic viscosity u, kinematic viscosity v =i; )

* Gravity g
 Surface tension o
* Speed of sound ¢



Anatomy of fluid flow

e Mach number M =lcl

UL UL
* Reynolds number Re = pu =—




Compressibility — Shock waves

» Shock waves appear for M>1
* Flow is compressible for M>0.2
* Flow is incompressible for M<0.2

[https://en.wikipedia.org/wiki/Mach_number#t/media/File:FA-18 Hornet_breaking_sound_barrier (7 July_1999).jpg]



Compressibility — Shock waves

* Shock waves appear for M>1
* Flow is compressible for M>0.2
* Flow is incompressible for M<0.2

[Shadow graph]



Incompressible flow

* Approximate small M by M = 0.
* Constant density

* Velocity divergence free: V-u =0
dx; dxq )

[Water and air bubbles.]




Reynolds number Re =0.16

[Water and aluminum dust.]



Reynolds number Re = 1.54

[Water and aluminum dust.]



Reynolds number Re = 9.6




Reynolds number Re = 9.6

—

[Water and aluminum dust.]



Reynolds number Re = 26

[Oil and magnesium.]



Reynolds number Re = 28.4

[Water and condensed milk.]



Reynolds number Re =41

[Water and condensed milk.]



Reynolds number Re = 300

Karman vortex street

[Wind and smoke.]



Reynolds number Re = 2000

[Water and air bubbles.]



Reynolds number Re = 10 000

[Water and air bubbles.]



Vortex shedding

* https://www.youtube.com/watch?v=9FRTj6 1J2k

Drag-to-thrust transition in the flow past a
rotationally oscillating cylinder

* https://gfm.aps.org/meetings/dfd-2020/5f5f0056199e4c091e67bd9%e

[Water and air bubbles.]


https://www.youtube.com/watch?v=_AJgEa2dbJU
https://gfm.aps.org/meetings/dfd-2020/5f5f0056199e4c091e67bd9e

Flow visualization: pathlines

[https://en.wikipedia.org/wiki/Streamlines,_streaklines, and_pathlinest#t/media/File:Kaberneeme_campfire_site.jpg]



Flow visualization: streaklines

[https://en.wikipedia.org/wiki/Streamlines,_streaklines, and_pathlinest#t/media/File:Aeroakustik-Windkanal-Messhalle.JPG]



Flow visualization: streamlines

https://www3.nd.edu/~cwang11/2dflowvis.html



Representation of fluid flow

Pathlines vs Streamlines

Particles vs mesh/fixed coordinate system

Lagrangian vs Eulerian representation

Smooth particle hydrodynamics vs Finite element method

Lighthill (db
1%

| t=7.23 E 1

plogH: 0 025 05 075 1 |

0 0.5 1

[https://www3.nd.edu/~cwangl11/2dflowvis.html]



Representation of fluid flow

e Pathlines vs Streamlines

* Particles vs mesh/fixed coordinate system

* Lagrangian vs Eulerian representation

* Smooth particle hydrodynamics vs Finite element method

a




Representation of fluid flow

* Lagrangian representation: moving particle position X(t), X(0) = X,

* Eulerian representation: fixed position x, velocity u(x, t)

e




Representation of fluid flow

* Lagrangian representation: moving particle position X(t), X(0) = X,
* Eulerian representation: fixed position x, velocity u(x, t)

cu(X(),t) =2

e




Representation of fluid flow

* Lagrangian representation: moving particle position X(t), X(0) = X,
* Eulerian representation: fixed position x, velocity u(x, t)

cu(X(),t) =2

: .. Du dx du Jdu
Material derlvatlve.D—t = (E -V)u +7t == + (u-V)u

* Acceleration along particle path

%



Discretization of DE: R(u)=0 —> Ax=0>b

* Particle system - mesh-free radial basis function
e Structured grid - stencil

e Unstructured mesh - basis function

* Minimizationmin || R(u) |l
* Collocation R(u(xi)) = 0, for all i
* Projection (R(u),v) = 0, forall v




Smooth particle hydrodynamics (SPH)

* Particle system {x;}
* Kernel function 7,

* Smoothing length /
* Field representation A(x) =

0
82137;

A(z) =

* Navier-Stokes equations
(partial differential equation) V- -u=



mooth particle hydrodynamics (SPH

W(|ri'rj

, h)

Sethey 5 : 2 ; : e
LT ; R\
D <5 § : {Laid ) S

[Bender, Koschier, SSIGGRAPH, 2015]



https://www.youtube.com/watch?v=POnmzzhc5E0

Finite difference method

e Structured grid - stencil (e.g. finite difference method)
* Collocation R(u(xi)) = 0, for all i
* Level set function for complex geometry

«

A A

[https://en.wikipedia.org/wiki/Level-set_method#/media/File:Level _set_method.png]




Finite volume method

* Based on local conservation laws over grid cells using Gauss theorem.

L B

Ou .
—4+V-f 0. |
x (w) = B )
_d’v+/ V - S I Y
du; 1 o
-+ — ¢ f(u)- = 0. ’
7 + - (u)-ndS |

[https://en.wikipedia.org/wiki/Finite_volume_method]



Finite element method

e Unstructured mesh - basis function ALGORITHM 9.2. (A, b) = assemble_system(f).
Input: function f

* Fixed or defo rming mesh Output: assembled matrix A and vector b.

* Projection (R(u),v) = 0, for all v 1: for k=0:no_elements-1 do
2:  q=get_no_local_shape_functions(k)

N 3:  loc2glob = get_local_to_global_map(k)
4:  for i=0:q do
u(x ’ t) ~ Z Uz (t) ¢z (37 ) 5: b[i] = integrate_vector(f, k, 1)
i=1 6: for j=0:q do
7: a[i,j] = integrate_matrix(k, i, j)
8: end for
9: end for

10:  add_to_global_vector(b, loc2glob)
11:  add_to_global_matrix(a, loc2glob)
12: end for

13: return A, b




FEM simulation of air past airplane

Pseudocolor
Var: Velocity_magnitude

B
0.000 9.363 18.73 28.09 37.45

Max: 37.45
Min: 0.000

[Jansson et al., Springer, 2018]



Discretization by a mesh

i}‘!

g J&,

[Jansson et al., Springer, 2018]



FEM simulation of airflow past landing gear

[De Abreu et al.,, Computers and Fluids, 2016]



Acoustic sources and turbulent vortices

Lighthill (db)
130

[De Abreu et al.,, Computers and Fluids, 2016]



Heart (deforming mesh) simulation
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[Spuhler et al., 2017, 2020]




Projection methods are optimal

Theorem 1.16 (Optimality of orthogonal projection). The orthogonal projection vy € S,
defined by
(v—vs,8) =0, VseS,

is the optimal approximation of v € V in S C V, in the sense that
lv—vsl| < flv—s]l, Vselb,

for || - || = (-,-)Y/? the norm induced by the inner product in V.




