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Integration of harmonic oscillator
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• k and the temperature T determine the 
sampling of x (here T is related with v0) 

• The time scales as  

• Some people don’t realize this 
• I have seen papers where people scale 

masses and accelerate MD!
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Energy comparisons

• Euler not stable 

• VV & LF very stable 

• Euler not reversible 

• VV+LF symplectic 

• Largest timestep: 2 

• This is 3.14 steps per period!!! 

• Advantage: great stability! 

• Disadvantage: too (?) great stability
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The kinetic energy is LF and VV

• With the same initial conditions LF and VV 
produce the same trajectory sequence xi 

• vi = (vi-1/2 + vi+1/2)/2 

• K = 1/2 m v2 

• unless equal: vi2 < [(vi-1/2 + vi+1/2)/2]2 

• The LF velocity are the “real” steps in the 
trajectory 

• LF <K> should be close to <U> 
• VV <K> might underestimate <U>



Integrator exercise conclusions

• Not considering v, LF and VV are identical 

• LF gives a good K 

• VV has x and v at the same time 

• but with VV you can also do half steps 
for v and get the better K 

• Use whatever you want, but be aware of 
the K issue with VV



Symplectic integration
. 



Why do some methods conserve energy?

• The Hamiltonian formulation of classical mechanics is based on the observation that  
 
 
where                       is called the Hamilton function and gives the total energy  

• Symplectic means ”area preserving”, so that the area element 
                  is unchanged under the map                   which gives 
 
 
 

• This prevents the coordinates and momenta from running away, and as a 
consequence it is possible to show that a slightly perturbed energy is conserved 

• Example: Euler-Cromer is symplectic since 

• Verlet and leapfrog are also symplectic

• Euler and Runge-Kutta are not symplectic

• Higher order symplectic methods can be constructed systematically
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Symplectic integrators: 
area preserving

integration of pendulum motion



Trotter decomposition

Γ(t) = exp(iLt)Γ(0)
iL = ·Γ ⋅ ∇Γ,
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A system of coupled, first-order differential eq. 
can be evolved from time t=0 to time t 
by applying the evolution operator 
where L is the Liouville operator, and Γ is 
he multidim. vector of indep. variables (x & v) 

Apply P times: 

For NVE dynamics: 

This can be split: 

Short time approx:



Multiple time-stepping

• Liouville operator for time reversible integration: 
see section 4.3.3 of Frenkel & Smit 

• Liouville and multiple time-stepping: 
see section 15.3 of Frenkel & Smit 

• Sympletic multiple time-stepping: 

• Split forces into a set of fast & set of slow changing 

• Integrate x as usual 

• every n steps : vi+1/2 = vi−1/2 +
Δt
m

(Ffast + n Fslow)

other steps : vi+1/2 = vi−1/2 +
Δt
m

Ffast


