DD2410

Lecture slides Localization

Global Navigation Satellite System (GNSS)

Global Positioning System (GPS)

- There are 24 GPS satellites orbiting the Earth every 12 hours at 20200km altitude
- Satellites send messages including time information. Receivers listen and calculate distance to satellite and can calculate position
- Needs to receive signals from at least 4 satellites to calculate the position.
- Accuracy around 5-10m

Differential GPS (DPGS)

- Correction with local reference information
- Local station coverage $100 \mathrm{~m}-3 \mathrm{~km}$
- Accuracy in the order of 1 m

Real-Time Differential GPS

Reference Station at
a Known Location

RTK-GPS

- Network of base stations with accurately known positions (ca 70 km apart)
- GPS receiver with radio (e.g. GPRS)
- Sends approximate position to server
- Gets local corrections from server
- Can get cm accuracy
- Used in civil engineering applications, e.g., building roads

So why do we need anything else???

So why do we need anything else???

- At least 4 satellites need to be in line of sight. \rightarrow Indoor,tunnels, etc GPS-denied
- Limited accuracy
- The update rate is relatively limited (a few Hz).

Stockholm International Fairs

- Had about $56000 m^{2}$ of exhibition space
- How to automate the process of marking stands on the floor?

Example fair layout

- Thousands of points to mark
- Very tedious job
- Time is money \rightarrow want short time between fairs

The Vision

目AUTOCAD 2002

Meet Harry Plotter!

Example marks

- Harry got a sister, Hermione
- System in operation since 2003

Current version of the hardware

Two sides of localization

- Dead reckoning
- Map based position estimate

Dead reckoning

- Use relative measurements to estimate how the robot is moving

Dead reckoning

- Use relative measurements to estimate how the robot is moving
- Examples
- Odometry using wheel encoders
- Motor commands
- Visual odometry

Dead reckoning

- Use relative measurements to estimate how the robot is moving
- Pros?
- Cons?

Dead reckoning

- Use relative measurements to estimate how the robot is moving
- Pros
- High frequency and low cost
- Cons
- Error unbounded and only relative position

Odometry dead-reckoning differential drive

- Odometry with noise (one possible model)
$-x(k+1)=x(k)+\left(v^{*} d t+\vartheta_{D}\right) * \cos (\theta)$
$-y(k+1)=y(k)+\left(v^{*} d t+\vartheta_{D}\right) * \sin (\theta)$
$-\theta(k+1)=\theta(k)+\left(\omega^{*} d t+\vartheta_{\theta, \omega}\right)+\vartheta_{\theta, v}$
- Where $\vartheta_{\mathrm{D}}, \vartheta_{\theta, v}$ and $\vartheta_{\theta, \omega}$ are typically assumed to be zero-mean Gaussian i.e. $\mathrm{N}\left(0, \sigma^{2}\right)$
- Integrating the noise leads to drift!

Visualization of drift in odometry

-
File Edit
辰回

Map based position estimate

- Measure distance, bearing, etc to "objects" with known locations

Map based position estimate

- Measure distance, bearing, etc to "objects" with known locations
- Examples:
- Triangulation at sea

Map based position estimate

- Measure distance, bearing, etc to "objects" with known locations
- Examples:
- Triangulation at sea
- Trilateration in GPS system

Map based position estimate

- Measure distance, bearing, etc to "objects" with known locations
- Pros?
- Cons?

Map based position estimate

- Measure distance, bearing, etc to "objects" with known locations
- Pros
- No drift, position in world frame
- Cons
- Need to correctly associate measurement with part of map, (typically) lower frequency

Localization

- Two step process
- Prediction step
- Update step

Localization

- Two step process
- Prediction step
- Dead reckoning estimation
- Motion model: $x_{k+1}=f\left(x_{k} \mid u_{k+1}\right)$
$\rightarrow \mathrm{p}\left(\mathrm{x}_{\mathrm{k}+1} \mid \mathrm{x}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}+1}\right)$
- Increases uncertainty

Localization

- Two step process
- Prediction step
- Dead reckoning estimation
- Motion model: $x_{k+1}=f\left(x_{k} \mid u_{k+1}\right)$
$\rightarrow \mathrm{p}\left(\mathrm{x}_{\mathrm{k}+1} \mid \mathrm{x}_{\mathrm{k},} \mathrm{u}_{\mathrm{k}+1}\right)$
- Increases uncertainty
- Update step
- Correct estimate with map based position
- Measurement model: $\mathrm{z}_{\mathrm{k}+1}=\mathrm{h}\left(\mathrm{x}_{\mathrm{k}+1}\right)$
$\rightarrow \mathrm{p}\left(\mathrm{z}_{\mathrm{k}+1} \mid \mathrm{x}_{\mathrm{k}+1}\right)$
- Decrease uncertainty

Example

- Volunteer needed!

Example

Person walks forward,
counting steps and estimating motion.
Uncertainty increases

Use distance meter to get distance to wall Position gets corrected and uncertainty decreases The more accurate measurement, the closer the updated position is to the measurement

Bayesian formulation of localization problem

Prediction based on control input / odometry, u_{k} :
$\mathbf{p}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{Z}_{\mathbf{k}}, \mathbf{U}_{\mathbf{k}+1}\right)=\int \mathbf{p}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{u}_{\mathbf{k}+1}, \mathbf{x}_{\mathbf{k}}\right) \mathbf{p}\left(\mathbf{x}_{\mathbf{k}} \mid \mathbf{Z}_{\mathrm{k}}, \mathbf{U}_{\mathbf{k}}\right) \mathbf{d} \mathbf{x}_{\mathbf{k}}$ where $\mathrm{p}\left(\mathbf{x}_{\mathrm{k}+1} \mid \mathbf{u}_{\mathrm{k}+1}, \mathbf{x}_{\mathrm{k}}\right)$ is the motion model often given by odometry
\rightarrow distribution smeared out (uncertainty increases)

Update with new measurement z_{k+1} :
$\mathbf{p}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{Z}_{\mathbf{k + 1}}, \mathbf{U}_{\mathbf{k + 1}}\right)=\mathbf{n} \mathbf{p}\left(\mathbf{Z}_{\mathbf{k + 1}} \mid \mathbf{x}_{\mathbf{k}+1}\right) \mathbf{p}\left(\mathbf{x}_{\mathbf{k}+\boldsymbol{1}} \mid \mathbf{Z}_{\mathbf{k}}, \mathbf{U}_{\mathbf{k + 1}}\right)$
where $\mathbf{p}\left(\mathbf{z}_{\mathrm{k}+1} \mid \mathbf{x}_{\mathrm{k}+1}\right)$ is the measurement model
\rightarrow distribution more peaked (uncertainty decreases)

Kalman Filter based Iocalization

- Approximate the distribution with a Gaussian
- Ex: Prediction step only

Extended Kalman Filter (EKF)

- K is the Kalman gain, weights motion model noise vs measurement noise

Measurement Update ("Correct")

(1) Compute the Kalman gain
(1) Project the state ahead

$$
\hat{x}_{k}^{-}=f\left(\hat{x}_{k-1}, u_{k-1}, 0\right)
$$

(2) Project the error covariance ahead

$$
P_{k}^{-}=A_{k} P_{k-1} A_{k}^{T}+W_{k} Q_{k-1} W_{k}^{T}
$$

$K_{k}=P_{k}^{-} H_{k}^{T}\left(H_{k} P_{k}^{-} H_{k}^{T}+V_{k} R_{k} V_{k}^{T}\right)^{-1}$
(2) Update estimate with measurement z_{k}

$$
\hat{x}_{k}=\hat{x}_{k}^{-}+K_{k}\left(z_{k}-h\left(\hat{x}_{k}^{-}, 0\right)\right)
$$

(3) Update the error covariance

$$
P_{k}=\left(I-K_{k} H_{k}\right) P_{k}^{-}
$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

$$
\left.A_{[i, j]}=\frac{\partial f_{[i]}}{\partial x_{[j]}}\left(\hat{x}_{k-1}, u_{k-1}, 0\right), \quad H_{[i, j]}=\frac{\partial h_{[i]}}{\partial x_{[j]}} \tilde{x}_{k}, 0\right) \quad W_{[i, j]}=\frac{\partial f_{[i]}}{\partial w_{[j]}}\left(\hat{x}_{k-1}, u_{k-1}, 0\right) \quad V_{[i, j]}=\frac{\partial h_{[i]}}{\partial v_{[j]}}\left(\tilde{x}_{k}, 0\right)
$$

Play with EKF

- Pure prediction
- Incorporate measurements
- Disturbances ("kidnapped robot")
- Global Iocalization
- What about large uncertainty and nonlinearities

Gauss vs particle set

- Green ellipse: 2D Gaussian
- Black dots: Samples of the same distribution

Particle filter

The particle filter represents probability distributions using a set of particles, p_{k}, sampled from the distribution $\mathrm{p}\left(\mathrm{x}_{\mathrm{k}} \mid \mathrm{Z}_{1: \mathrm{k}}\right)$.

Each particle represents one "hypothesis" about the state.

Each particle also has a weight, initialized as $\pi=1 / N$.

Prediction

$p\left(x_{k+1} \mid Z_{k+1}, U_{k+1}\right)=\eta \int p\left(x_{k+1} \mid x_{k}, u_{k+1}\right) p\left(x_{k} \mid Z_{k}, U_{k}\right) d x_{k}$

For each particle: predict the new state using the motion model $\mathrm{p}\left(\mathrm{x}_{\mathrm{k}+1} \mid \mathrm{x}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}+1}\right)$.

Will make the particles spread

Measurements in particle filter

Measurement update
$p\left(x_{k+1} \mid Z_{k+1}, U_{k+1}\right)=\eta p\left(Z_{k+1} \mid x_{k+1}\right) p\left(x_{k+1} \mid Z_{k}, U_{k+1}\right)$

For each particle:
multiply the weight by the measurement likelihood given by the sensor model, $p\left(z_{k+1} \mid x_{k+1}\right)$

Particles explaining the measurements will get higher weights

Algorithm

1. Initialize the particles given what you know to start with (nothing \rightarrow uniform, a lot \rightarrow very small spread) and with weight $1 / \mathrm{N}$.
2. Use odometry to update all poses of particles and perturb each particle according to odomety noise (different realization of noise for each particle).
3. Use measurements and multiply the weight of each particle, i, with $p\left(z_{k} \mid x_{k}^{i}\right)$
4. Return to 1.

Problem

- As the particles spread, fewer and fewer of the particles are in regions where $p\left(x_{k} \mid Z_{k}, U_{k}\right)$ is high.
- The approximation of the true distribution becomes bad!
- Solution?

Resampling

- As the particles spread, fewer and fewer of the particles are in regions where $p\left(x_{k} \mid Z_{k}, U_{k}\right)$ is high.
- The approximation of the true distribution becomes bad!
- Solution? Importance resampling!
- How?
- Create a new particle set.
- Probability to copy a particle from the old set is proportional to the weight. Can have multiple copies.
- Set weight to $1 / \mathrm{N}$ again
- High weights results in many copies
- Resources better spent

Monte Carlo Localizatio (MCL)

1. Initialize the particles given what you know to start with (nothing \rightarrow uniform, a lot \rightarrow very small spread) and with weight $1 / \mathrm{N}$.
2. Use odometry to update all poses of particles and perturb each particle according to odomety noise (different realization of noise for each particle).
3. Use measurements and multiply the weight of each particle, i, with $p\left(z_{k} \mid x_{k}^{i}\right)$
4. Re-sample "if needed" and then return to 1 .

Test particle filter

- Prediction
- Tracking
- Global localization

Test particle filter

- Non-Gaussian distributions
- Start from uniform distribution and measure range to point landmark. What does the position distrution look like?

Update with range to singe landmark

- Clearly not Gaussian!

Update with range to two landmarks

- Smaller uncertainty
- Now closer to Gaussian

Update with angle to single landmark

-Why do we not see a clear peak?

