DD2552 Fall 2021
Homework

Karl Palmskog

Abstract

Due: January 14, 2022, at 23:59 CET. Submit your solutions as
a PDF file by e-mail to palmskog@kth.se. State your name and e-
mail address at the very top of the first PDF page. Discussions of
ideas in groups of two people are allowed, but you should write down
your own solutions individually. You should also acknowledge any
collaboration. Some of the problems are meant to be quite challenging
and you are not necessarily expected to solve all of them. A total
score of 60 is enough for grade FX, 70 points for grade E, 100 points
for grade D, 120 points for grade C, 140 points for grade B, and 160
points for grade A. The statistical model checking survey used in the
course (https://doi.org/10.1145/3158668) is referenced in several
exercises.

1. Path and State CTL Formulas (20p). Consider the original non-
probabilistic CTL (https://dl.acm.org/doi/pdf/10.1145/5397.5399):

pu=Tla|-pleNe|AXp | EXp| AlpUq| | ElpU ¢

e Show how to break up formulas ¢ into state formulas ¢ and path
formulas 1.

e Define the semantics, in the usual form of a relation M, s |= _, of ¢ and
1 for M a non-probabilistic transition system model, i.e., a DTMC
without probabilities.

e Define a translation function that takes any formula ¢ and returns an
equivalent formula ¢ or .

e Prove that the translation of A[ag U a1] is true for a system M in your
semantics whenever the original formula is true for M in the original
CTL semantics (defined in the paper referenced above).

https://doi.org/10.1145/3158668
https://dl.acm.org/doi/pdf/10.1145/5397.5399

2. Extended PCTL definition and semantics (10p). Consider the
PCTL syntax fragment usually used in the course:

pu=Tla|=¢|pAd]|Pso(¥)
P u=¢U™ ¢
tez2° 6e[0,1]

Define an extended PCTL syntax which also includes:
e implication (—)
e disjunction (V)
e unbounded until (U)
e weak bounded until (W<t)
e weak unbounded until (W)

e probability operators for less than, greater than, and less than or equal
to (P<97 P>97 PS@)

Then, define extensions of the semantic relations M, s = _and M, 7 = _ for
the new syntax, where M is a DTMC. Please follow the general approach
used in the paper by Hansson and Jonsson (https://link.springer.com/
article/10.1007/BF01211866) and do not transcribe definitions from other
papers or other lecture notes on the web.

3. A DTMC as a program (10p). Consider the DTMC below. Define

this DTMC programmatically in PRISM’s textual language (see examples:
https://www.prismmodelchecker.org/manual/Appendices/ExplicitModelFiles).
Formulate a true, meaningful PCTL formula for the DTMC in PRISM spec-

ification syntax that includes a probability operator and a non-zero/non-one

bound (in particular, do not use =7). Give an intuitive explanation why the

formula is true.

/_\@/\@ M S1 S2 S3 S84 S5
s1 |0 05 0 05 0

s 10 0 1 0 0

ss/0 1 0 0 0

/\ s 105 0 0 0 0.5
@ O M I

https://link.springer.com/article/10.1007/BF01211866
https://link.springer.com/article/10.1007/BF01211866
https://www.prismmodelchecker.org/manual/Appendices/ExplicitModelFiles

4. Programmatic DTMC/CTMC for SMC (10p). What is the ad-
vantage for statistical verification of PCTL/CSL properties to have a pro-
grammatic definition of a DTMC/CTMC (as opposed to, for example, a
matrix-based representation)?

5. Curtailed sampling plan (10p). Consider statistical verification of
a stochastic system for a “good” path property ¢ using a curtailed sampling
plan (page 30-31 in https://doi.org/10.1016/j.1ic.2006.05.002). De-
fine the indifference interval by setting 26 = 10~ and error probabilities by
setting & = 8 = 1078, Assume the underlying probability p of 1/ being true
is 0.9. What is the probability that we will accept the system after we have
carried out the curtailed sampling plan? Motivate your answer carefully.

6. Equivalence of CTMC path definitions (10p). Let M be a CTMC
and 7w be a path of M starting in s. We have two possible definitions of :

e As a total function from positive real numbers to states in M.

e As an infinite sequence of states in M with labels of positive real values
between adjacent pairs of states.

Show that these two definitions are equivalent.

7. CTMCs and rate matrix diagonals (10p). In the usual definition
of CTMCs, diagonal elements Q(s;, sj) in the rate matrix) are constrained
to be —(3_, ., @(s, s;)). Explain why this constraint is used, and what can
happen with a “CTMC” whose @) does not satisfy this constraint. Is the
model checking problem for the logic CSL still well defined for such CTMCs?

8. CSL and QuaTEx (10p). Consider the QuaTEx language defined
in reference 5 in the survey (https://doi.org/10.1016/j.entcs.2005.
10.040). Make a succinct comparison between, on one hand, PCTL/CSL
as defined in the course, and, on the other hand, QuaTEx. Consider in
particular expressive power and supported operators. Does the comparison
change if you instead of the course PCTL/CSL consider PCTL/CSL as
defined by PRISM?

9. Runtime verification and SMC (10p). Runtime verification is a
system analysis approach based on extracting information from a running

https://doi.org/10.1016/j.ic.2006.05.002
https://doi.org/10.1016/j.entcs.2005.10.040
https://doi.org/10.1016/j.entcs.2005.10.040

system and using it to detect observed behaviors satisfying or violating cer-
tain properties (see for example Wikipedia or reference 49 in the survey).

Explain how runtime verification can be useful when implementing sta-
tistical model checking, and give an example of a workflow, i.e., a concrete
sequence of steps, applying statistical model checking and runtime verifica-
tion to a (small) DTMC model and (simple) PCTL formula. You do not
have to explain any details on how the statistical tester works.

10. MDPs modelling a distributed system (20p). Assume you have
n (independent) DTMCs My, ..., M,,. Consider the Markov Decision Pro-
cess which nondeterministically interleaves transitions from these DTMCs.
For example, the scheduler can select the DTMC M; and perform a prob-
abilistic transition (si,...,S;,...,8,) — (S1,...,8},...,8y), where s; and s/
are states in M;. Show how this MDP can be defined using action labels
in the style that is used to define MDPs in the PRISM tool (https://www.
prismmodelchecker.org/manual/Appendices/ExplicitModelFiles).

Note: you should give a general abstract MDP definition for any n, not
a programmatic definition in PRISM’s language or similar.

11. PRISM style PTAs (10p). Consider the timed automaton be-
low. Define this automaton as a PTA as accurately as you can in PRISM’s
language for PTAs (you may have to decorate some transitions with rea-
sonable probabilities). Define a PRISM-compatible non-probabilistic spec-
ification for the automaton that captures reachability of the right-most
end state from the left-most starting state (see examples at http://www.
prismmodelchecker.org/benchmarks/props-pta.php). Then, formulate
a PRISM-compatible specification describing the minimum probability of
reaching the end state from the start state.

y: 2
z: 1

@x:—ﬂ@ 8/0\2 @Q:@@

G

12. Nested PCTL probability operators (10p). Let send and end
be atomic state formulas, and let T be the usual the state formula that is al-
ways true. Consider the following PCTL property with a nested probability

INIV

https://www.prismmodelchecker.org/manual/Appendices/ExplicitModelFiles
https://www.prismmodelchecker.org/manual/Appendices/ExplicitModelFiles
http://www.prismmodelchecker.org/benchmarks/props-pta.php
http://www.prismmodelchecker.org/benchmarks/props-pta.php

operator:
Ps08(P>0.1(T US' end) US? send)

Construct a DTMC with at least five states for which this property is true in
the starting state. Ensure that there is at least one path from the starting
state with measure greater than zero for your DTMC where the topmost
path property (obtained by removing Ps¢) is false.

You do not need to directly prove the nested property using the PCTL
semantics on your DTMC, but you should explain carefully why the property
holds.

13. PCTL Path Prefix Bound (20p). Consider again the usual course
PCTL fragment, which allows nesting of probability operators:

=T |al=¢|pAd|Pso(v)
Y= pUSt ¢
tez2% 6¢c|0,1]

Recall that to determine whether a path 7 satisfies a path property 1,
we only need to observe a finite prefix of 7. We now want to compute an
upper bound on the size of this prefix for an arbitrary . For example, for
Y = T U=2a, we need (at most) a prefix of length 2, since a is atomic.

a) Define a general algorithm that computes the path prefix upper bound
as an integer, given an arbitrary formula . It is highly recommended
that your algorithm is defined recursively on formula syntax. Briefly
motivate why your algorithm is correct, i.e., why we would never need
to look further in a path to determine whether 1) holds.

b) Motivate briefly why the output of your algorithm is indeed just an
upper bound, and how you could get away with using smaller prefixes
in special cases.

14. Hypotheses and random variables for hypothesis testing (10p).
Let M be a DTMC, and P>¢9(v) be the specification for (the initial state
of) M. Let the indifference interval be given by § = 0.02, and call the
underlying path measure/probability p (for).

a) Formulate as concretely as possible the two competing hypotheses one
should use for performing statistical hypothesis testing on M to de-
termine whether the specification holds.

b)

Let X; be the Bernoulli random variable and z; be the actual outcome
(1 for true and 0 for false) associated with checking ¢ on the ith
sampled trace from M, out of a total of n. Let Y be the random
variable that is the sum of all Xj, i.e., Y = > | X;. Consider the
probability that Y < ¢, for ¢ a constant. Give an expression of this
probability in terms of ¢, n, and p.

15. Implementation of simulation (10p). Suppose you want imple-
ment a simulator to use in statistical model checking (SMC) of PCTL prop-
erties on DTMCs.

a)

Explain in detail the performance advantages of implementing DTMC
simulation at the level of a programming language, i.e., why users may
want to take the time to define a DTMC in this way rather than as a
matrix.

Assume your simulator has been shown to guarantee that, given a
DTMC representation, the output is a trace for the input DTMC.
Is this in itself enough for your simulator to be applicable for use in
SMC? Explain why or why not, and if not, give an example of what
can go wrong.

