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Last Seminar and Today

Last seminar:

error control for statistical model checking
black box systems

Today:

comparison of numerical and statistical methods
statistical checking of unbounded untils
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Key properties of (PRISM) numerical checking

pros:

iteratively improved precision of path probabilities
lots of “symbolic tricks” can improve performance
nesting of probability operator not an issue
unbounded untils work fine

cons:

needs white box, controllable model (rate matrix)
no distributed checking
problems scaling beyond state spaces of size > 109
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PRISM numerical approach for CTMC

focus on formulas P≥θ(φU≤t φ′)
“uniformize” CTMC to a DTMC
compute measure for path for all states simultaneously
compare measure to θ for given state
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PRISM numerical measure computation

P(φU≤t φ′) =
∞∑

k=0
γ(k, q · t) · (Pk · f (s))

q is a “uniformization constant”, q ≥ max{E ′(s) | s ∈ S}
E ′(s) is exit rate for s
f (s) = 1 whenM, s |= φ′, f (s) = 0 otherwise
γ(k, q · t) is the kth Poisson probability with parameter q · t
γ(k, q · t) = e−q·t · (q · t)k/k!
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Numerical computation complexity

introduce error tolerance ε
number of iterations grows very slowly as ε decreases
for large q · t, number of iterations is O(q · t)
each iteration takes O(M) time, where M is number of
non-zero entries in rate matrix
overall complexity: O(q · t ·M)
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Statistical approach, abstractly

select error probabilities α and β
set up hypotheses H0 and H1 with indifference interval
(half-width δ)
assume the underlying path measure (probability) is p
main performance measure: number of samples/simulations
(sample size)
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Statistical approach complexity

we can stop analyzing a sample when we reach a state
satisfying ¬φ ∨ φ′
in the worst case, we need time proportional to t, so expected
time is O(q · t)
define Np, the expected number of required samples
overall complexity: O(q · t · Np)
key fact: no absolute dependency on state space size
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Combining numerical and statistical approaches

can we get benefits of both approaches?
need to consider models where numerical and statistical both
work (DTMC, CTMC)
nested probabilities: inner error bounds become terrible with
sampling
idea (Ymer): sample for outer operator, numerical for inner
easy to transfer guarantees from numerical to statistical
(α = β = 0)
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Memory requirements

for numerical: need to store the iteration vector
in case study: bottom out at 27 million states

for statistical: only need to store current state
beyond 27 million states with ease
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