DD2552 - Seminars on Theoretical Computer

Science, Programming Languages and Formal
Methods, Seminar 2

Karl Palmskog (palmskog@kth.se)

2021-09-02

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Last Seminar and Today

Last seminar:

@ syntax and informal semantics of CTL, computational tree logic
@ intuition behind PCTL, the probabilistic extension of CTL

Today:

@ towards a formal semantics of PCTL
@ reasoning manually on DTMCs with PCTL

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Reminder on Decidability and Truth

@ problems can be expressed as questions having a yes/no answer
e "is this list sorted?”
e "does this graph have a k-coloring?”

@ some questions can be answered by using an algorithm - we say
they are decidable

@ in this course, we will have many questions with “yes” answers
that must be established “manually” without an obvious
decision algorithm

@ defining a logic often means defining what someone has to do
to give a "yes” answer

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Defining Logics in Computer Science

@ definition of logic's syntax

@ what is a formula?
@ sometimes includes lexing

@ definition of logic’s semantics

@ when is a formula true?
@ may require use of mathematical structures
@ should be concise and canonical

© metatheory of the logic

@ why do we care about formulas being true or false?
@ can we decide if formulas are true?
@ how efficiently can we decide?

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Transition Systems Again

M = (S§,—, L) where

e S is a (finite) set of states
e +CSxS
o L: S 2AP (AP are atomic propositions)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Paths in a Transition System

A path for a transition system (S, —, L) is an infinite sequence
T = 5S50,51,---55ny-.-

where s; € S and s — Sk1.
We write the ith element of a path 7 as 7 (/).

We write the prefix of a path (“trace”) of length n as 7|0, n].

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

CTL Syntax Fragment

¢pu=Tlal-¢|oA¢
Y=g U ¢

te 720

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Defining CTL Semantics

@ we define the relation M, s |= ¢ recursively
e "¢ is true in the state s in M"

@ we then define the relation M, 7 = ¢
e "4 is true for the path 7 in M"

@ idea: we can unfold relations to manually prove by induction
that a formula is true

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

More Operators in CTL

@ how do we define ¢V ¢'?
@ how do we define ¢ — ¢'?
e how do we define “weak until”, ¢ W<t ¢'?

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Discrete Time Markov Chains Again

M = (S,si, M, L) where

S is a (finite) set of states

si € S is the initial state

M: S x S+ [0, 1] defines transition probabilities, where
o forallse S, > sM(s,s')=1

o L: S 24P (AP are atomic propositions)

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

Markov Chain Transition Probabilities

S5
/0?‘@ M |s; s3 s3 sS4 S5
‘ﬁ/ s |0 05 0 05 0
s/0 0 1 0 0
s3/0 1 0 0 0
s4/05 0 0 0 05
ss|0 0 0 1 0

@ probability of ending up in s5 after two steps?
@ probability of the sequence of steps s1, sp, 53,57

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

PCTL Syntax Fragment

¢u=Tlal=¢loN¢|Po(¥)
Y=g U ¢
tez=% 0clo,1]

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

PCTL Semantics

o we follow CTL semantics for regular operators
@ Ps¢(1)) is defined using the measure operator jis

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

QuaTex Syntax

QO
i

= D eval E[PEzp];
D == set of Defn

Defn == N(z1,...,zm) = PEzp;
SExp == c| f| F(SEzp1,...,SEzpy) | z;
PEzp = SExzp | ON(SEzp1,..., SEzpn,)

| if SEzp then PExp: else PEap, fi

UntilBounded(¢1, ¢2,t) = if t > time() then 0 else if ¢ then 1 else
if ¢; then (O (UntilBounded(¢1, P2,t)) else 0 fi fi fi;

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

QuaTex Semantics

()elp =

()1 = ()

(s)[F (.'S'Expl7 ..., SExpi)]|p = F((s)[SEzp1]p, - .., (s)[SEzpk] D)
(s)[E[PEzp]]p = E[(r)[PExp]p] for m € Paths(s)

(m)[SEzp]p = (v[0))[SEzp]p

(m)[if SExzp then PExp: else PExp> fi]lp =

if (w[0])[SExzp]p = true then (7)[PExp1]p else (7)[PEzp2]p
(MION(SEapr. ..., SEapy)]p =
(7)) [Blz1 = (x[0)[SEzpilp, -, &m = (7[0])[SEzpm]p]]p
where N(z1,...,2m) = B;€ D

Karl Palmskog (palmskog@kth.se) DD2552 - Seminars on Theoretical Computer Science, Program

