Föreläsning 14: Info om munta för C och A + labb 8,9,10

  • DD1325: Etikmomentet
  • Info om labbar och munta för högre betyg
  • Labb 8,9 och 10
  • Repetition
    • Datalogi
    • Abstraktion
    • Datastrukturer
    • Algoritmer
  • Instuderingstips
  • Extentor: se Tentabanken
  • pip install

DD1325: Etikmomentet

  • Två föreläsningar
  • Lämna in preliminär version av etikuppsatsen
  • Gruppövning
  • Peer review
  • Slutlig inlämning av etikuppsatsen

Labb 8, 9, 10

Betyg C

Ur kursens betygskriterier:

För betyg C ska kraven för betyg E vara uppfyllda, och dessutom ska du kunna jämföra algoritmer och datastrukturer och bedöma dessas lämplighet för ett givet problem.

Betyg A

Ur kursens betygskriterier:

För betyg A ska kraven för betyg C vara uppfyllda, och man ska dessutom kunna modifiera/kombinera algoritmer och datastrukturer för att lösa nya problem. Här ställs också höga krav på tydlighet i algoritmbeskrivningar.

 

Labbar och munta för betyg C och A kan handla om alla områden i kursen.


Individuellt arbete

OBS! Det här är individuella moment. Otillåtet samarbete anmäls till disciplinnämnden. 


Högrebetygslabbar

Endast den som har blivit godkänd på labb 1-10 i tid kan se C-labben (ni läggs in manuellt för att få åtkomst). Den som blivit godkänd på C-labben läggs in på A-labben.

Endast för den som redovisat alla E-labbar i tid. Denna labb är individuell och får inte göras i grupp, eller i samarbete med någon annan. Läs hederskodex innan du börjar med uppgiften.

 

C-labben

Ett krav för betyg C är att man ska kunna jämföra algoritmer och datastrukturer och bedöma dessas lämplighet för ett givet problem. Din uppgift är att göra en jämförelse....

Jämförelsen måste innehålla både egna experiment och teoretiska resonemang. Du får använda dig av både programkod och data från andra källor. Ange alltid dina källor, både när det gäller programkod och teori.

Du ska skriva en kort rapport (max tre sidor + appendix) där du redogör för dina resultat och hur du kom fram till dom.

Redovisning

Rapporten lämnas in i Canvas och redovisas muntligt (på en bokad redovisningstid).

Vid den muntliga redovisningen ska du kunna

  • Beskriva översiktligt hur datastrukturerna fungerar, och hur de kan användas.
  • Motivera de val du gjort när du lagt upp jämförelserna mellan funktionerna.
  • Analysera resultaten.

När du är godkänd på C-labben får du tillgång till A-labben.

Laboration för betyg A

För betyg A ska kraven för betyg C vara uppfyllda, och man ska dessutom kunna modifiera/kombinera algoritmer och datastrukturer för att lösa nya problem. Här ställs också höga krav på tydlighet i algoritmbeskrivningar. Din uppgift är att lösa följande problem...

Redovisning

Rapporten lämnas in i Canvas och redovisas muntligt (på en bokad redovisningstid).

Vid den muntliga redovisningen ska du kunna

  • Förklara din algoritmbeskrivning,
  • Redogöra för hur ditt program fungerar i detalj,
  • Visa att du fått godkänt i Kattis,
  • Motivera vilken tidskomplexitet din algoritm har,
  • Visa upp tre nya uppsättningar testdata.

Munta för betyg C och A

Görs muntligt i Zoom, i samband med redovisning av C- och A-labben.

Problemfrågor, t ex:

  • Demonstrera en algoritm för givna data.
  • Visa hur en operation i en datastruktur fungerar för givna data.
  • Berätta vilka algoritmer/datastrukturer från kursen som kan användas.
  • Resonera om varför en viss algoritm/datastruktur är lämplig i sammanhanget.
  • Beskriv en algoritm som löser ett givet problem.
  • Uppskatta tidskomplexiteten för din algoritm.

Men också teorifrågor, t ex:

  • Vilken tidskomplexitet har algoritmen xxx?
  • Vad är viktigt att tänka på när en använder datastrukturen yyy?

Kom ihåg:

  • Viktigt att motivera svaren!
  • Viktigt att motiveringar är tydliga.

Muntan genomförs i Zoom:

  • Du kan boka tid för munta även om du inte gjort högrebetygslabbar.
  • Separat bokning för C-munta och A-munta
  • Vilken typ av frågor är det?
    • Frågorna liknar de frågor som finns i tentabanken  på C- respektive A-nivå och är formulerade m h t kursPM Links to an external site., avsnitt "Betyg/betygskriterier". De är dock anpassade till den begränsade tiden samt för att kunna besvaras muntligt.
  • Vilka hjälpmedel är tillåtna? Se nedan.
  • Vilket av kursinnehållet ingår?
    • Allt

Muntan går till så här

    1. Boka en tid på bokningssidan (tiderna läggs upp en vecka i förväg).
    2. Vid den bokade tiden startar du det Quiz som innehåller uppgiften (frågan slumpas fram). Du får inte öppna den tidigare. 20 minuter senare ska den lämnas in (30 minuter för funka r1).  Då hela presentationen är muntlig består inlämningen endast av hederskodex samt ett fritextfält om man önskar lämna någon kommentar.
    3. Skapa ett Zoom-möte och annonserar detta i kösystemet (likt på labbarna). Ange er starttid t ex "14:20" som kommentar. Annonsera mötet strax innan din bokade tid så underlättar det för lärare och assistenter.
    4. En lärare eller assistent ansluter och kontrollerar legitimation. Om du önskar ställa en fråga ändrar du kommentaren till "14:20 (jag har en fråga)".
    5. En lärare/assistent ansluter och du får c:a 5 minuters presentationstid. Vill du kunna överklaga bedömningen väljer du nu att spela in presentationen (det är alltså du själv som spelar in i Zoom). Det är ert ansvar att vid presentationstid kunna besvara frågan utöver att ha löst den. Ni får rita på papper eller skärm och visa men frågorna är utformade så att de kan besvaras endast muntligt. Läraren/assistenten meddelar er avslutningsvis betyg. Du får inte reda på lösningen efter presentationen.
    6. I punkterna ovan är det upp till dig att se till att tekniken fungerar. Testa ditt Zoom-rum i förväg!

Tillåtet hjälpmedel på muntan är:

  • Ett egenhändigt skrivet formelblad, fyra A4 (eller två dubbelsidiga ark om du skrivit ut på papper).
    • Du får skriva precis vad du vill på formelbladen, men fontstorleken måste vara rimlig (inte mindre än 10).
    • Du får inte använda ett formelblad som någon annan har författat.
    • Om du kopierat från t ex föreläsningsanteckningarna - skriv en referens.

Hur beskriver man en algoritm?

Skilj på att förklara hur en algoritm fungerar och att konstruera en algoritm.

  • Vad är indata till algoritmen?
  • Vad är utdata?
  • Punktvis (inte löptext). Ordningen är viktig!
  • När avslutas algoritmen?

pip install

För C-labben och A-labben kan du behöva använda externa paket, som du behöver installera med pip install. Gör så här:

Windows: Öppna Windows PowerShell

Mac: Öppna Terminal

Unix/Ubuntu: Öppna terminalfönstret

Där skriver du

pip install nyttPaket

Efter det kan du importera nyttPaket i dina program (precis som du gör med ett inbyggt paket som random).

Kortfattade instruktioner finns här: Quickstart pip install Links to an external site.

Hur vet du att de paket du installerat är säkra? Installera paketet safety Links to an external site. och kontrollera detta med

safety check

Exempel på tentaupgift betyg C: Komprimering


Anta att vi vill lagra en lista med namnen på all världens pappor. Namnen ska skrivas med rätt tecken ur respektive skriftspråk (du kan anta att det finns omkring 100 000 olika tecken totalt i skriftspråken).
Listan blir lång, så vi vill komprimera den, kanske med någon av metoderna
Huffmankodning eller Lempel-Ziv (LZW).

a) Skriv upp två egenskaper som är intressanta att jämföra för komprimeringen.

b) Jämför Huffmankodning och Lempel-Ziv för var och en av de två egenskaperna.

Motivera dina slutsatser och illustrera med exempel. Du får göra egna
antaganden om namnlistans innehåll.

Lösning (Men på muntan förväntar vi oss inte en omfattande lösning pga begränsad tid)

Exempel på labbuppgift betyg A: Silhuettproblemet

Om man på håll betraktar en stad i skymningen ser man inte dom enskilda byggnaderna utan bara silhuetten, den yttersta konturen, avteckna sig mot himlen. Hitta på en algoritm som givet varje byggnads kontur beräknar stadssilhuetten.
stadssilhuett

Anta att alla byggnader står på x-axeln, är rektangulära och beskrivs av tripplar(left, height, right) där left är vänsterväggens x-koordinat, right är högerväggens x-koordinat och height är höjden (y-koordinat).

Inmatningen består av n stycken tripplar, ordnade i stigande värden på vänsterväggar, och utmatningen ska vara en rad med x,y-koordinater som från vänster till höger beskriver silhuetten.

x-värdena anger var på x-axeln silhuetten går vertikalt och y anger på vilken höjd silhuetten fortsätter efter x-värdet. Den sista y-koordinaten är alltid noll eftersom alla byggnader står på x-axeln.

Exempel: Om n=8 och inmatningen är
(1,11,5) (2,6,7) (3,13,9) (12,7,16) (14,3,25) (19,18,22) (23,13,29) (24,4,28)
så blir utmatningen

     x= 1  y= 11
     x= 3  y= 13
     x= 9  y= 0
     x= 12 y= 7
     x= 16 y= 3
     x= 19 y= 18
     x= 22 y= 3
     x= 23 y= 13
     x= 29 y= 0

a) Formulera en algoritm som givet varje byggnads kontur beräknar stadssilhuetten. Algoritmen måste beskrivas på ett strukturerat och tydligt sätt.

b) Demonstrera hur din algoritm fungerar med exempel.

c) Uppskatta tidskomplexiteten för din algoritm.

Uppgiften ska lösas enskilt och redovisas skriftligt och muntligt.

Den skriftliga redovisningen ska innehålla

  • uppgiftsnamn och ditt namn,
  • algoritmbeskrivning,
  • program,
  • testdata
  • tidskomplexitet med motivering

Vid den muntliga redovisningen ska du

  • visa upp en tydlig och korrekt algoritmbeskrivning för ditt problem,
  • visa upp tre nya uppsättningar testdata,
  • redogöra för hur ditt program fungerar,
  • visa att du fått godkänt i Kattis,
  • visa vilken tidskomplexitet din algoritm har.

Lösning


Labb 8, 9, 10

Se 


Repetition

Kursen heter Tillämpad datalogi. Mängden tillämpningar är obegränsad. All tillämpning bör motiveras - man måste kunna tala om varför man valt att göra på ett visst sätt.

Datalogi

Vad var datalogi nu igen?

Datalogi är läran om datastrukturer och algoritmer, dvs hur man kan organisera och hålla reda på data samt hur dessa data kan utnyttjas enligt en steg-för-steg-beskrivning för att (effektivt) lösa något problem.

Abstraktion

Ytterligare ett centralt begrepp i kursen är abstraktion. I Nationalencyklopedin står det så här:

  • Abstrakt: "En föreställning är abstrakt om den syftar till att fånga det allmängiltiga hos företeelsen i fråga och bortse från eventuella tillfälligheter. Föreställningen om cirkelns begrepp är t.ex. en abstrakt föreställning till skillnad från föreställningen om en enskild cirkel."
  • Abstrakt tänkande: "Abstrakt tänkande är tankeprocesser som grundar sig på abstrakta begrepp och allmänna principer och inte på enskilda föremål eller konkreta företeelser, och där olika begrepp kan sammanställas till nya helheter, i vilka oväsentliga delar utelämnats."

I datalogi:

  • I definitionen av en abstrakt datatyp (ADT) anger man vilka operationer som finns (t ex insert(x), exists(x)), dvs man definerar ett gränssnitt.
  • Vid konstruktion av algoritmen behöver man inte tänka på implementationen av datastrukturerna.
  • Det här gör det lättare för programmerare att samarbeta i ett projekt:
    • Den som skriver ADT:en kan ändra implementationen, så länge allt fungerar likadant.
    • Den som använder ADT:en behöver inte bry sig om hur den är konstruerad, utan behöver bara förstå gränssnittet.
  • Förenklar kodåtervinning (tänk på labbarna i kursen!).

Ett exempel: en abstrakt ordlista kan defineras med ett gränssnitt bestående av två operationer: insert(x), exists(x).

Du har själv implementerat en sådan datastruktur på två olika sätt

  • I labb 3 - med binärt sökträd
  • I labb 7 - med en hashtabell

När du sedan använde ordlistan i breddenförstsökningen i labb 5 så använde du den abstrakt, utan att reflektera över hur den var implementerad.

Datastrukturer

Datastrukturer används för att lagra och använda data. I kursen har åtminstonde följande datastrukturer tagits upp:

  • Små objekt för egendefinierade saker (t ex Noder av olika slag)
  • Länkade listor bestående av noder med en next-pekare
  • Vektor/array (inbegriper pythons inbyggda lista)
  • Stack (implementerad med en länkad lista)
  • Kö (implementerad med en länkad lista)
  • Allmänna träd (implementerade med noder med två pekare)
  • Binära träd (implementerade med noder med två pekare)
  • Hashtabeller (implementerade med en vektor)
  • Booleska hashtabeller och bloomfilter
  • Trappa/heap (implementerad med en vektor som tolkas som ett binärträd)
  • Prioritetskön (implementerad med en trappa)

Vi har definierat dessa datastrukturer abstrakt - vi är överens om hur de bör funka. Dessutom har vi implementerat dem. Sedan har vi använt dem på ett abstrakt vis - utan att behöva bry oss om hur de var implementerade. I kursen ingår både och - att förstå hur de funkar och använda dem på ett abstrakt plan.

Algoritmer

Algoritmer används för att lösa problem. En algoritm utnyttjar en eller flera olika typer av datastrukturer och det är rätt datastruktur i kombination med rätt algoritm som gör algoritmen effektiv. I kursen har följande algoritmer tagits upp:

  • Sökning:
    • Linjärsökning
    • Binärsökning
  • Grafgenomgång/problemträd:
    • Breddenförstsökning
    • Djupetförstsökning
    • Bästaförstsökning
  • Rekursiva algoritmer, tex:
    • Listrekursion
    • Trädrekursion
    • Binärträdssökning, -utskrift
    • Rekursiv medåkning för syntaxkontroll
  • Sortering, tex:
    • Urvalssortering
    • Insättningssortering
    • Bubbelsortering
    • Räknesortering (Distribution count)
    • Damernaförstsortering
    • Quicksort
    • Mergesort
    • Heapsort
  • Hashning, med tillämpningar:
    • En miljon sånger
    • Data för atomer
    • Bloomfilter
    • för att spara lösenord
  • Textsökning:
    • KMP-automat för textsökning
    • Boyer-Moore
    • Rabin-Karp
    • Reguljära uttryck
  • Komprimeringsalgoritmer:
    • Följdlängdskodning (RLE)
    • Huffmankodning
    • Lempel-Ziv-kodning (LZ), speciellt LZW
  • Redundans, korrigering
    • paritetsbit
    • hammingavstånd
    • sista siffran i personnummer
  • Krypteringsalgoritmer, tex
    • TranspositionschifferTitta mest på tentor utan lösning
    • Caesarchiffer
    • rot13
    • Bokchiffer
    • One-time pad
    • Key exchange
    • RSA

Det finns också en mängd namnlösa småalgoritmer som ingår i de ovanstående. Givetvis är det viktigt att förstå hur ett binärt träd byggs upp innan man kan söka i det, hur en hashtabell eller ett bloomfilter fylls i innan sökning kan ske och så vidare. Hur man sätter in något i en datastruktur kan ju också beskrivas med en algoritm!

Tidskomplexitet

Algoritmer jämförs genom antalet operationer som måste utföras givet ett antal element eller mer grovt med komplexitetsberäkningar, där komplexiteten anges med en funktion av viss storleksordning, Ordo, O(f(N)). Här är en på intet sätt uttömmande tabell över några algoritmer och deras tidskomplexitet. Kom ihåg att det inte räcker att kunna dessa utantill - man måste även kunna resonera om varför det är så, och när det inte gäller.

Komplexitet Algoritmer
O(n2) enkla sorteringsalgoritmer, quicksort
O(n*log(n)) mergesort, heapsort, quicksort
O(n) linjärsökning, räknesortering
O(log(n)) binärsökning, sökning och insättning i binärträd
O(1) insättning och sökning i hashtabell
1 en addition, en multiplikation, en jämförelse

När man anger ordo-klassen behöver man bara ta med den största termen, och kan strunta i multiplikation eller division med konstant, t ex är O(nlogn(n) + 155*log(n) - 1) = O(nlog(n)).

Man mäter komplexitet i enkla operationer (t ex: en addition, en multiplikation eller en jämförelse). Vilken operation man mäter beror på vilken typ av algoritm det är frågan om. Exempelvis innehåller all någon form av jämförelse så där är det naturligt att räkna antal jämförelser snarare än aritmetik.

Man måste naturligtvis definiera vad man menar med de i uttrycket ingående variablerna och vilka förutsättningar som gäller.

Samma algoritm har olika tidskomplexitet vid olika förutsättningar. Ofta (men inte alltid) är man intresserad av det värsta fallet och de förutsättningar som gör att algoritmen tar längst tid. Här är en tabell över hur lång tid det tar (hur många jämförelser det går åt) för att hitta ett värde i ett binärt sökträd i några olika fall:

Sökning i balanserat binärträd Tidsåtgång
Om det sökta finns, i bästa fall 1
Om det sökta finns, i värsta fall log(n)
Om det sökta finns, i snitt log(n)-1
Om det sökta ej finns log(n)

Om man vet att det sökta finns och bara vill konstatera var i trädet det finns behöver man inte kontrollera den sista noden. Då blir värsta fallet: log(n)-1 och snittet ungefär: log(n)-2.

Men om insättningen i det binära trädet gick dåligt ligger alla värden i en tarm och då blir sökningen som i en enkellänkad lista:

Sökning i enkellänkad lista Tidsåtgång
Om det sökta finns, i bästa fall 1
Om det sökta finns, i värsta fall n
Om det sökta finns, i snitt n/2
Om det sökta ej finns n

Om man vet att det sökta finns och bara vill konstatera var i listan det finns behöver man inte kontrollera den nedersta noden. Då blir värsta fallet: n-1 och snittet: (n-1)/2.

OBS. Oftast har man ingen aning om huruvida det sökta finns eller inte...

Instuderingstips inför muntan

För varje datastruktur och algoritm behöver du kunna:

  • Förstå
    • Abstrakt: hur använder man den?
    • Konkret: hur implementerar man den? (Kunna beskriva i ord.)
  • Analysera
    • Hur snabb/effektiv är den? Tidskomplexitet/minnesåtgång.
    • Vad har den för fördelar/nackdelar? Begränsningar?
    • När är den lämplig/olämplig, jämfört med andra algoritmer/datastrukturer?
  • Titta på C-uppgifter och A-uppgifter på gamla tentor