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Derived Quantities



Fields

scalar field vector field tensor field
s: [E" — IR v:IE" — IR™ T:E" — IR™*?
c1(x) c11(x) ...  cp(x)
s(x) v(x) = : T(x) =
with x € IE" Com (X) Crm1(X) oot (%)

with x € IE" with x € [E"




Derivatives

vector field tensor field
v:IE" - R"™ T:E" —» R™*?
C1 (X) Cl11 (X) “e Clb(X)
The first derivative of a scalar field v(x) = : T(x) = :
IS a ve(_:tor field calleql grad_lenp Cm (X) en1(X)  oor Cmp(X)
It consists of the partial derivatives with x € IB" with x € IE"
of the scalar function s(x) for each
dimension of the observation space.
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2D scalar field gradient



vector field

v:IE" - IR™

[0

calar field

The second derivative of a scalar

It consists of the partial derivatives
of s(x) derived twice for each

field is a tensor field called Hessian.

dimension of the observation space. |

ds

ox S
— y
dy

gradient

tensor field

T:IE"

C11 (X)
T(x) = ;

Cm1 (X)
with x € IE"

e Y

\
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S
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Ves(x,y) = (Syx

Hessian

Derivatives
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S

scalar field

E" — IR

s(x)

with x € IE"

Derivatives

tensor field

T:IE" — R™*?

Cl11 (X) “e Clb(X)

The first derivative of a vector field | T(%) = ; ;

is a tensor field called Jacobian. Cm1(X) ... cmp(X)
It consists of the partial derivatives | with x € E”

of v(x) for each dimension of the

observation space. | "\
\
Y
u(x, y)) (ux uy)
VX, — VV X, =
( Y) (v(x, y) ( y) Uy Uy
2D vector field Jacobian



s(z,y)

2D scalar field

s(z,y,2)

3D scalar field

v(z,y) = (:ﬁ)

2D vector field
Gradient of a 2D scalar field

U
v(z,y,z) = | v
w

3D vector field

Gradient of a 3D scalar field

Overview of Notation

Uy U
I = (3 o)

Jacobian of a 2D vector field
Hessian of a 2D scalar field

J(X,y,z) =1 Vx Vv Vz
Wy Wy Wy

Jacobian of a 3D vector field

Hessian of a 3D scalar field



Derived Quantities

e Divergence of v:
e scalar field

e observe transport of a small ball around a point
e expanding volume =» positive divergence
e contracting volume =» negative divergence
e constant volume =» zero divergence

divv =0 < v is incompressible



Derived Quantities

e Laplacian of a scalar field:
e Scalar field

e Divergence of the gradient of the scalar field

/fx\

Lf =dvgrad f =div| f,
\fz}
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Derived Quantities

Interpretation of Laplacian:

Measure of the difference between the average value of f in the immediate
neighborhood of the point and the precise value of the field at the point.

Properties of the Laplacian of a scalar field:
L invariant under rotation and translation of the underlying coordinate system

Lf=0 <& fis harmonic function



Curl of v:

vector field

also called rotation (rot) or vorticity

Indication of how the field swirls at a point

curl v =

)
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Derived Quantities

e Curl of v:

e paddle wheel model:
e insert paddle wheel in a flow
e orient such that its rate of rotation is maximal
e => curl v is parallel to main rotation axis
e => |curl v| is corresponds to rate of rotation

e golf ball model
e consider golf ball in v
e IS transported and rotates
e => curl v is parallel to main rotation axis
e => |curl v| is corresponds to rate of rotation



Derived Quantities

Properties of curl:

curl v =0 < v is irrotational or curl-free

v = grad f & v Is conservative

Conservative is subclass of curl-free,
since curl grad f = 0 for any scalar field f



Derived Quantities

The Nabla operator:
also called “Del”-operator
abbreviation: V

symbolically written as:

/5\

Sx
V:|£+ji+k£: o
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Derived Quantities

e The Nabla operator:

e Allows us to write the other operators as:

gradf =Vt

dvv=V-v

curl v=Vxv
L f =div(gradf)=V.(Vf)=V*f
J,=Vv



Derived Quantities

e Scalar and vector identities:

Vicf )=cVI  foraconstantC
fg)=fVg+gVf
/

f g):(gi—ng)/g2 at points X where g(x) =0
div(v+w)=div v+divw
curl(v+w)=curl v+curl w
div(f v)= fdivv+v-Vf
div(vxw)=w-curl v—v-curl w |
exam



Derived Quantities

e Scalar and vector identities (cont’d):

div curl v=0

curl(f v)= f curl v+Vf xv
curl Vf =0

V3(f g)= fV?g+gV?f +2(Vf -Vg)
diV(Vf ng):O

div(f Vg—gVf )= f V’g—gV?*f

exam



e Decomposition of Jacobian Matrix:

e J, can be decomposed into symmetric and antisymmetric part:

J,=5+Q

1

with

S = _(JV + JVT) symmetric part (shear contribution)

(0

2

\— @,

0

Wy

@, )

0

with

antisymmetric part
(rotational contribution)

@, W, -V,
®, |=curl v=|u,—-w

X

w, vV, —u,
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Derived Quantities

e \Vortex-Strain duality:
e (O dominates S: high vortical activity

e S dominates Q: high strain

J, =S+Q

S:%(JV+JVT)

(0 - o)




Derived Quantities

e Q-criterion, or, Okubo-Weiss parameter:
e Q > 0: vortex region, since vorticity magnitude dominates the rate of strain
e Q < 0: region of high stretching, since rate of strain dominates vorticity magnitude
e Captures vortex-strain duality

Q=512 = 8I*) = w]* = 5IISII

e A,cCriterion:
e Second largest eigenvalue of the symmetric tensor S? + (32
e \Vortices can be found where 1, < 0
e A, > 0 lacks physical interpretation

e Does not capture stretching and folding of fluid particles, i.e., does not describe the vortex-
strain duality



Derived Quantities

Aao-criterion Ay <0




Derived Quantities

Summary

e Derived quantities for scalar and vector fields
e many more

e Based on derivatives
e Divergence

e Laplacian

o Curl

e Vortex-Strain duality
e vortex regions in flow fields



