



# Geometry-based Vector Field Visualization

geometric objects

shape is directly related to the flow

points, lines, surfaces, ...





$$\mathbf{v}: \mathbf{E}^n \to \mathbb{R}^n$$



# Steady Vector Fields

- tangent curves / stream lines
- stream surfaces

# $\mathbf{v}: \mathbf{E}^{n+1} \to \mathbb{R}^n$



# Unsteady Vector Fields

- path/streak/time lines
- path/streak/time surfaces

 $\mathbf{v}: \mathbf{E}^n \to \mathbb{R}^n$  steady vector field



$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

$$\mathbf{v}(x,y) = \begin{pmatrix} \cos(x+2y) + x\cos(2\pi) \\ \sin(x-2y) + y\sin(3\pi) \end{pmatrix}$$
 example

 $\mathbf{v}: \mathbf{E}^{n+1} \to \mathbb{R}^n$  unsteady vector field time-dependent vf



$$\mathbf{v}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \end{pmatrix}$$

$$\mathbf{v}(x,y,t) = \begin{pmatrix} \cos(x+2y) + x\cos(2\pi t) \\ \sin(x-2y) + y\sin(\pi + 2\pi t) \end{pmatrix} \text{example}$$



2D time-dependent vector field particle visualization



2D time-dependent vector field particle visualization space-time diagram



stream lines

curve tangential to the vector field in each point for a **fixed time** 

describes motion of a massless particle in a **steady** flow field



path lines

curve tangential to the vector field in each point **over time** 

describes motion of a massless particle in an **unsteady** flow field

# very important

# steady vector field

$$\mathbf{v}(x,y)$$

$$\frac{d}{d\tau} \mathbf{x}(\tau) = \mathbf{v}(\mathbf{x}(\tau))$$
with  $\mathbf{x}(0) = \mathbf{x}_0$ 

#### stream lines

$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$



#### unsteady vector field

$$\mathbf{v}(x, y, t)$$

$$\frac{d}{d\tau} \mathbf{x}(\tau) = \mathbf{v}(\mathbf{x}(\tau), t_0)$$
with  $\mathbf{x}(0) = \mathbf{x}_0$ 

#### stream lines

$$\mathbf{v}(x,y,t) \equiv \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \end{pmatrix}$$

$$\frac{d}{dt} \mathbf{x}(t) = \mathbf{v}(\mathbf{x}(t), t)$$
with  $\mathbf{x}(t_0) = \mathbf{x}_0$ 

# path lines

$$\mathbf{p}(x,y,t) \equiv \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \end{pmatrix}$$

# very important

# steady vector field

 $\mathbf{v}(x,y)$ 

stream lines

$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

2D

3D

$$\mathbf{v}(x,y,z) = \begin{pmatrix} u(x,y,z) \\ v(x,y,z) \\ w(x,y,z) \end{pmatrix}$$

## unsteady vector field

 $\mathbf{v}(x,y,t)$ 

#### stream lines

$$\mathbf{s}(x,y,t) = \begin{pmatrix} u(x,y,t) \\ v(x,y,t) \\ 0 \end{pmatrix}$$

#### path lines

$$\mathbf{p}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \\ 1 \end{pmatrix}$$

*n*D unsteady vector field

→ (n+1)D steady vector field

$$\mathbf{s}(x, y, z, t) = \begin{pmatrix} u(x, y, z, t) \\ v(x, y, z, t) \\ w(x, y, z, t) \\ 0 \end{pmatrix}$$

$$\mathbf{p}(x,y,z,t) = \begin{pmatrix} u(x,y,z,t) \\ v(x,y,z,t) \\ w(x,y,z,t) \\ 1 \end{pmatrix}$$

# Characteristic Curves



Based on tangent curves, we define 4 types of *characteristic curves* of a vector field.



stream lines



path lines

# Time

# streak line

location of all particles set out at a fixed point at different times



# streak lines



# Time

# time line

location of all particles set out on a certain line at a fixed time



#### time line

location of all particles set out on a certain line at a fixed time





# stream lines

# streak lines





# path lines

# time lines









streak lines tangent curve integration time lines







# **Characteristic Curves**

- Stream line: curve tangential to the vector field in each point for a fixed time
  - describes the motion of a massless particle in a steady flow field
- Path line: curve tangential to the vector field in each point over time
  - describes the motion of a particle over time in an unsteady flow field
- Streak line: location of all particles set out at a fixed point at different times
- Time line: location of all particles set out on a certain line at a fixed time

# Example:















# Steady Vector Fields

stream, path, and streak lines coincide

# $\mathbf{v}: \mathbf{E}^{n+1} \to \mathbb{R}^n$



# Unsteady Vector Fields

 stream, path, and streak lines are different



# Properties of Characteristic Curves

#### Stream and Path lines:

 Through all non-critical points (x,t) in space-time there is exactly one stream/path line passing through it.

## Path lines:

Path lines intersect in space.

### Streak lines:

Many streak lines through every spatio-temporal point.

# Time lines:

- Depends on seeding. If seeding lines do not intersect, then time lines do not intersect either.
- (see tabular summary on the next page, same content)



# Properties of Characteristic Curves

|             | do not intersect each other |              | through a point in the domain |               | integration |
|-------------|-----------------------------|--------------|-------------------------------|---------------|-------------|
|             | space                       | space-time   | space                         | space-time    |             |
| stream line | $\checkmark$                | $\checkmark$ | $\checkmark$                  | $\checkmark$  | line        |
| path line   | ×                           | $\checkmark$ | <b>x</b> (>1)                 | $\checkmark$  | line        |
| streak line | ×                           | ×            | <b>x</b> (>1)                 | <b>x</b> (>1) | surface **  |
| time line   | *                           | *            | *                             | *             | surface **  |

<sup>\*</sup> If seeding lines do not intersect, then time lines do not intersect either.

<sup>\*\*</sup> Line-type integration requires derived vector field, which incurs high computational costs and only pays off when many curves must be integrated.

#### Geometry-based Vector Field Visualization: unsteady flows



streak lines

# 2D time-dependent flow behind a cylinder

streak linespavilthlimutesintersection



Weinkauf, Theisel, Sorkine, TopolnVis 2011





streak lines



path lines







characteristic curves integral curves integral lines

particles

integral surfaces

#### Geometry-based Vector Field Visualization: unsteady flows

Particle Tracer

similar to steady case

integrate path lines

only show current integration step as a circle / sphere



particle visualization from the beginning of the lecture



flow behind a cylinder developing the von Kármán vortex street

# steady vector field $\mathbf{v}(\mathbf{x})$

#### stream surface

General stream surfaces [Hultquist, Vis 1992]

Topological considerations [Stalling, Phd thesis, 1998]

High accuracy
[Garth et al., Vis 2008]
[Schulze et al., SGP 2012]

# unsteady vector field $\mathbf{v}(\mathbf{x},t)$

### path surface



#### streak surface







Adaptive insertion/removal of points at **front line** 

- Euclidean distance
- Angle
- . . .

# stream & path surfaces

streak & time surfaces







**Complete remeshing** in every time step is necessary to stay within resolution constraints

#### Adaptive Resolution of Time and Streak Surfaces



 Integrating a stream/path/streak/time line/surface means to look at the following subspaces of a 3D unsteady flow (which itself is 4D):

|        | line         | surface      |
|--------|--------------|--------------|
| Stream | 1D (line)    | 2D (surface) |
| Path   | 1D (line)    | 2D (surface) |
| Streak | 2D (surface) | 3D (volume)  |
| Time   | 2D (surface) | 3D (volume)  |





# Streak Surface around Ahmed Body



# Interactive Seeding and Streak/Time Surfaces behind Cylinder



# IRIS: Illustrative Rendering of Integral Surfaces

Mathias Hummel, Christoph Garth, Hans Hagen, Bernd Hamann, Kenneth I. Joy





# Summary

- Integration in unsteady vector fields
  - autonomous ODE
- Characteristic Curves
  - stream lines
  - path lines
  - streak lines
  - time lines
- Integral Surfaces
  - adaptive resolution
  - rendering