

Visualization, DD2257
Prof. Dr. Tino Weinkauf

Vector Fields

A wind tunnel model of a Cessna 182 showing a wingtip vortex. Tested in the RPI (Rensselaer Polytechnic Institute) Subsonic Wind Tunnel.

By Ben FrantzDale (2007).

wool tufts

Vector Fields

smoke injection

[NASA, J. Exp. Biol.]

http://autospeed.com/cms/A 108677/article.html

http://autospeed.com/cms/A_108677/article.html

smoke nozzles

Smoke injection

A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol, 207(24):4299–4323, 2004.

Smoke injection

http://www-me.ccny.cuny.edu/research/aerolab/facilities/images/wt2.jpg

Clouds (satellite image)

Juan Fernandez Islands

http://de.wikipedia.org/wiki/Bild:Vortex-street-1.jpg

Clouds (satellite image)

http://daac.gsfc.nasa.gov/gallery/frances/

Real-World Sources of Flow Data

point sensors

optical methods

particle image velocimetry

Simulation of Flow Data

Navier-Stokes equations

$$ho\dot{ec{v}} =
ho\left(rac{\partial ec{v}}{\partial t} + (ec{v}\cdot
abla)ec{v}
ight) = -
abla p + \mu\Deltaec{v} + (\lambda + \mu)
abla (
abla \cdot ec{v}) + ec{f}$$

Simulation of Flow Data

high computational costs

example:

flow simulation around airplane

1 second fully resolved flight computed on KTH's Beskow

computation time: 500 years

data size: 100 petabyte

vector field

$$\mathbf{v}: \mathbb{E}^n \to \mathbb{R}^m$$

$$\mathbf{v}(\mathbf{x}) = \begin{pmatrix} c_1(\mathbf{x}) \\ \vdots \\ c_m(\mathbf{x}) \end{pmatrix}$$
 with $\mathbf{x} \in \mathbb{E}^n$

$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

2D vector field

vector field

$$\mathbf{v}: \mathbb{E}^n \to \mathbb{R}^m$$

$$\mathbf{v}(\mathbf{x}) = \begin{pmatrix} c_1(\mathbf{x}) \\ \vdots \\ c_m(\mathbf{x}) \end{pmatrix}$$
 with $\mathbf{x} \in \mathbb{E}^n$

$$\mathbf{v}(x,y) = \binom{2x - y}{2y}$$

2D vector field

information encoded in a vector

vector field visualization method: which of these aspects are shown?

vector field

 $\mathbf{v}: \mathbb{E}^n \to \mathbb{R}^m$

 $\int c_1(\mathbf{x})$

The first derivative of a vector field is a tensor field called **Jacobian**. It consists of the partial derivatives of $\mathbf{v}(\mathbf{x})$ for each dimension of the observation space.

$$\mathbf{v}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

2D vector field

tensor field

 $\mathbf{T}: \mathbb{E}^n \to \mathbb{R}^{m \times b}$

$$\mathbf{T}(\mathbf{x}) = \begin{pmatrix} c_{11}(\mathbf{x}) & \dots & c_{1b}(\mathbf{x}) \\ \vdots & & \vdots \\ c_{m1}(\mathbf{x}) & \dots & c_{mb}(\mathbf{x}) \end{pmatrix}$$
with $\mathbf{x} \in \mathbb{E}^n$

$$\nabla \mathbf{v}(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Jacobian

Steady Vector Fields

 $\mathbf{v}: \mathbf{E}^{n+1} \to \mathbb{R}^n$

 $\mathbf{v}: \mathbf{E}^n \to \mathbb{R}^n$

Unsteady Vector Fields

time-dependent

2D time-dependent vector field particle visualization

2D time-dependent vector field particle visualization space-time diagram

stream lines

curve tangential to the vector field in each point for a **fixed time**

describes motion of a massless particle in a **steady** flow field

path lines

curve tangential to the vector field in each point **over time**

describes motion of a massless particle in an **unsteady** flow field

Topological Structures

steady 2D vector field

$$\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix}$$

Topological Structures

steady 3D vector field

$$\mathbf{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

stream lines

critical points

Direct

Integration

Features

arrow plots

Geometrybased Imagebased: LIC, Spot Noise, IBFV

Derived Quantities

Topology

Vortex Structures