
Visualization, DD2257

Prof. Dr. Tino Weinkauf

Vector Field Visualization

Image-Based Methods

(integration-based)

Flow Visualization: Image-Based Methods

method for creating noise

textures

spot: small intensity impulse

convolution of a white noise

texture with the spot

usable for data visualization

varying parameters of the spot

Jarke van Wijk, Siggraph 1991

Spot Noise

Flow Visualization: Image-Based Methods

● Spot Noise

● Different textures can be created using different spot shapes

Flow Visualization: Image-Based Methods

● Spot Noise

● Different textures can be created using different spot sizes

Flow Visualization: Image-Based Methods

● Spot Noise

● Different textures can be created using different spot shapes

● Aligning the shape of the spot with the direction of flow gives a good visualization

effect:

● In direction of flow, scale proportional to (1 + |v|),

where |v| = velocity magnitude

● At 90 degrees to flow, scale proportional to 1 / (1 + |v|)

Flow Visualization: Image-Based Methods

● Spot Noise

The velocity of the flow is encoded in the length of the

streaks used to smear the texture.

Flow Visualization: Image-Based Methods

● Enhanced Spot Noise

● Problem: The spot influences a region in the

texture while its shape is based on data at a

single point. If the velocity varies strongly over

this region, the shape of the spot does not reflect

the data properly.

● Solution: Bend and deform spot following

streamlines

standard spot noise

enhanced spot noise

de Leeuw & van Wijk, Vis 1995

Wall friction displayed

using oil and paint - wind

evaporates oil and paint

leaves white traces

Numerical simulation

of flow, visualized

using spot noise

Flow Visualization: Image-Based Methods

● Spot Noise: Relation to real-world experiments

Flow Visualization: Image-Based Methods

Line Integral Convolution

● LIC – Line Integral Convolution

(Cabral/Leedom, Siggraph 1993)

● A global method to visualize vector fields

2D vector field vector field on surface

(often called 2.5D)

3D vector field

very important

Line Integral Convolution

● Idea of Line Integral Convolution (LIC)

● Global visualization technique; uses stream lines

● Start with a random texture

● Smear out this texture along the stream lines in a vector field

● Results in

● low correlation of intensity values between neighboring lines,

● but high correlation along them

Line Integral Convolution

● Algorithm for 2D LIC

● Convolve a random texture along the

stream lines

vector field

stream line

input texture

output image

Line Integral Convolution

● Algorithm for 2D LIC

● Let t → Φ0(t) the stream line containing the point (x0,y0)

● T(x,y) is the randomly generated input texture

● Compute the pixel intensity as:

● Kernel:

● Finite support [-L,L]

● Normalized

● Symmetric

convolution of the input texture T

along the stream line Φ0(t) with

a kernel k(t), which has a length

of 2*L.

I(x0 , y0) = k(t) T (0 (t))dt
−L

L



L-L

kernel
k(t)

k t()dt

-L

L

 =1

Line Integral Convolution

Convolution

Input texture

(noise)

Vector field

Final image

L-L

kernel
k(t)

k t()dt

-L

L

 =1

Line Integral Convolution

● Technical details:

● Rasterization of the stream line

● Type of kernel

● Length of kernel

● Contrast

● Performance

● Reproducibility

Line Integral Convolution

● Technical details: Rasterization of the stream line

?

? ?

? ?

?

?

Line Integral Convolution

● Technical details: Rasterization of the stream line

● How to do it?

● Consider aliasing?

Line Integral Convolution

● Technical details: Rasterization of the stream line

● Easiest way: sample the arc-length-parameterized stream line equidistantly & evaluate the

random texture as a bilinear scalar field

The step size of the integrator should be

the min(width, height) of a pixel

Line Integral Convolution

● Technical details: Type of kernel

● Gaussian kernel

● Triangle kernel

● Box kernel

● Result is the arithmetic mean of all collected pixel values.

L-L

kernel
k(t)

k t()dt

-L

L

 =1

Line Integral Convolution

● Technical details: Length of kernel

● Longer kernel leads to longer lines, and less contrast

● Smaller kernel leads to shorter lines, and more contrast

Line Integral Convolution

2D flow behind a cylinderFilter length influences the quality of LIC images

filter length = 100

Line Integral Convolution

2D flow behind a cylinderFilter length influences the quality of LIC images

filter length = 50

Line Integral Convolution

2D flow behind a cylinderFilter length influences the quality of LIC images

filter length = 25

Line Integral Convolution

2D flow behind a cylinderFilter length influences the quality of LIC images

filter length = 10

Line Integral Convolution

2D flow behind a cylinderFilter length influences the quality of LIC images

filter length = 1

Line Integral Convolution

● Technical details: Contrast

● Problem:

Convolution reduces contrast of the grayscale image

● Solutions:

● Use black-white image as input

● Enhance contrast after convolution

Line Integral Convolution

● Technical details: Contrast

grayscale input texture black-white input texture

Line Integral Convolution

● Technical details: Contrast

grayscale input texture black-white input texture

enhanced contrast

Line Integral Convolution

Compute mean and standard

deviation of the convolved

texture

Adjust the mean and standard

deviation to desired values

Enhancing the contrast

arithmetic mean standard deviation

stretching factor

(restrict to a maximum value !)

new grayscale pixel values

only for all non-black pixels !

Line Integral Convolution

● Technical details: Enhancing the contrast

● Good defaults for desired mean and standard deviation:

● considering a range [0, 1] with 0=black and 1=white

● mean ➔ 0.5

● standard deviation ➔ 0.1

Line Integral Convolution

● Technical details: Performance ➔ FastLIC

● Fast Line Integral Convolution (FastLIC)

Stalling/Hege 1995

● ➔ Increase performance of LIC

● apply convolution on all pixels on a particular stream line

● store all pixels for which convolution is carried out

● for untouched pixel: start a new tangent curve from there

● Significant speed up in comparison to original LIC

● Current implementations of LIC follow these ideas instead of the original

algorithm.

Line Integral Convolution

● Technical details: Performance ➔ FastLIC

● General idea: exploit the coherence along the stream line

● Classic LIC:

Visit every pixel, Integrate stream line, Convolve

● FastLIC:

Visit every pixel that has not yet been visited

Integrate stream line for as long as possible

Convolve for every pixel covered by the stream line

Line Integral Convolution

● Technical details: Performance ➔ FastLIC

Line Integral Convolution

● Technical details: Performance ➔ FastLIC

● Shifting the kernel: fast update possible for most kernels

Line Integral Convolution

● Technical details: Performance ➔ FastLIC

● Significantly fewer stream lines required

● Significantly better anti-aliasing

131072 stream lines were required

to compute the classic LIC texture.

9 seconds for 512x256 texture.

6186 stream lines were required to

compute the FastLIC texture.

<1 second for 512x256 texture.

Line Integral Convolution

● Technical details: Reproducibility

● Using a random texture makes it difficult to reproduce the result from a previous

run of the program

● ➔ Initialize the random number generator using a seed.

● The seed could be a parameter given by the user.

● srand() is the corresponding C function.

● Then, the same random texture is generated with each run of the program. Unless you

change other parameters such as the size of the texture.

Flow Visualization: Image-Based Methods

● LIC – Line Integral Convolution

● Improving LIC in the following directions:

● ➔ combination with color coding

● ➔ special applications (motion blur…)

● ➔ adding flow orientation

● ➔ LIC on surfaces

● ➔ LIC for 3D flows

● ➔ LIC for unsteady flows

Flow Visualization: Image-Based Methods

● LIC – Line Integral Convolution

● Combination with color coding

● Usually, LIC does not use the color channel

● ➔ Use color to encode scalar quantities

Velocity magnitude

encoded using color

2D flow behind a cylinder

Line Integral Convolution

LIC and color coding of

velocity magnitude

Flow Visualization: Image-Based Methods

● Color Weaving (Urness et al., Vis 2003)

● How to encode different scalar quantities in a single LIC image?

Four artificially defined,

mutually overlapping regions,

overlaid on a LIC image. The

color combinations in the

overlap regions are obtained

by averaging in RGB

colorspace.

Flow Visualization: Image-Based Methods

● Color Weaving (Urness et al., Vis 2003)

● How to encode different scalar quantities in a single LIC image?

The same four regions,

represented across the same

LIC image via color weaving.

Note the continuity of color

along individual streamlines

within each region, and the

ability to accurately perceive

combinations of component

colors in the areas of high

overlap (characterized by the

presence of three or more

layers).

Flow Visualization: Image-Based Methods

● Color Weaving (Urness et al., Vis 2003)

● Idea: Visualize multi-variate data on top of LIC by encoding different scalar

quantities into the color of neighboring stream lines

Close-ups

Flow Visualization: Image-Based Methods

● Color Weaving (Urness et al., Vis 2003)

● 5 base colors; highly saturated and

perceptually iso-luminant

● Select colors that are easy to discriminate

● Create two-dimensional color maps:

● Vary saturation along horizontal axis

● Vary value along vertical axis

saturation

v
a

lu
e

Flow Visualization: Image-Based Methods

● Color Weaving (Urness et al., Vis 2003)

● Each scalar quantity gets its own colormap

● Final pixel color:

● Hue: scalar quantity to be encoded, i.e., its colormap

● Value: gray value obtained from LIC

● Saturation: value of the scalar quantity

● One has to be careful when several stream lines run across the same pixel

Line Integral Convolution

Here, the chosen vector field is

the gradient field of the image.

Line Integral Convolution

Add motion blur by means of variable length LIC

Line Integral Convolution

Length of convolution integral with respect to magnitude of vector field

Line Integral Convolution

● Oriented LIC (OLIC):

● Visualizes orientation (in addition to direction)

● Uses a sparse texture, i.e., smearing of individual drops

● Asymmetric convolution kernel

L-L

1 anisotropic
convolution

kernel

Line Integral Convolution

● Oriented LIC (OLIC)

Flow Visualization: Image-Based Methods

● LIC on Surfaces

● 2 possibilities:

● Integrate on surfaces

● Integrate in image space

● Show in Amira

LIC on Surfaces

flow texture

Generate

Project

Eye

Image

plane

3D object

space

LIC on Surfaces

flow texture

Generate

Project

Eye

Image

plane

3D object

space

Eye

Image

plane

flow texture

Generate

Project

Silhouette Lines

Rendering

No surface shading

Rendering

Gray surface

Rendering

Cool/warm shading

for surface

Rendering

Gray surface

Yellow/blue flow

Flow Visualization: Image-Based Methods

● LIC for 3D Flows

● LIC concept easily extendable to 3D

● Problem: rendering!

3D LIC can only reveal

interesting structures, if

some data is discarded.

3D LIC

Dense Noise Sparse Noise

3D LIC Rendering

● Scalar Volume Rendering via

● Slice Based Volume Rendering

● Raycasting

● see Lecture on Volume Rendering

3D LIC volume is explored by interactively moving a clip plane

(from Rezk et al 97)

3D LIC using volume rendering (from Interrante 97)

Flow Visualization: Image-Based Methods

Flow Visualization: Image-Based Methods

Use scalar quantities such as vorticity magnitude to define

opacity for the final rendering.

Flow Visualization: Image-Based Methods

● LIC for unsteady flows:

● UFLIC [Shen, Kao 97]

● convolution along path lines (instead of stream lines)

Flow Visualization: Image-Based Methods

● Comparison of LIC and Spot Noise:

● Spot noise: better encoding of velocity (magnitude)

● LIC: better encoding of critical points

Spot noise LIC

Flow Visualization: Image-Based Methods

● Texture advection

● Based on moving (groups of) texels (texture elements)

● Classification by

● Advection scheme: forward / backward

● Advection primitive: texel / textured polygon

● Backward integration:

● To get pixel color, integrate backwards over a certain time, get color from there

● Iteration: backward integration / update

● usually comes with GPU implementation

Flow Visualization: Image-Based Methods

Flow Visualization: Image-Based Methods

Flow Visualization: Image-Based Methods

Flow Visualization: Image-Based Methods

Flow Visualization: Image-Based Methods

● Image-based flow visualization

● similar to real-world experiments

● Spot noise

● LIC

● algorithmic details

● extensions

● Texture advection

Summary

