Visualization, DD2257
Prof. Dr. Tino Weinkauf

Geometry-based Scalar Field Visualization

Function Plot

standard visualization of 1D scalar fields

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

sample function values
$\{(x, f(x)) \mid x \in \mathbb{R}\}$
connect neighboring samples

Height Plots

function plots for 2D scalar fields

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

sample function values
$\left\{(x, y, f(x, y)) \mid(x, y) \in \mathbb{R}^{2}\right\}$
connect neighboring samples surface

Isolines in 2D Scalar Fields

given:
scalar function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ isovalue $c \in \mathbb{R}$
definition of 2D contour:

$$
\{(x, y) \mid f(x, y)=c\}
$$

2D contours are curves
if f is differentiable and $\nabla f \neq \mathbf{0}$
common name: isolines

Properties of Isolines

closed curves
unless exiting the domain
cannot intersect each other
nested curves
points on isolines have similar semantics
density of the lines reveals
 strength of the gradient

Properties of Isolines

gradient vector is perpendicular to the isolines rate of change is zero along isolines

Properties of Isolines

connected component:
a given isovalue produces one isocontour often consisting of several separate lines

three connected components making up one isocontour

Properties of Isolines

many connected components if data set is noisy

mild topological smoothing

height field

Isabel data set, NCAR, USA. Smoothing method: Günther et al., VIS 2014

height field

Isabel data set, NCAR, USA. Smoothing method: Günther et al., VIS 2014

Applications of Isolines

 annotate with isovalues

Applications of Isolines

can be applied to slices in 3D scalar fields

Contouring

- grid-based contouring
- pixel-by-pixel contouring
- marching squares
- grid-free contouring

Pixel-by-Pixel Contouring

Overlay a pixel grid onto the domain. For each pixel, $f(x, y)$ is computed.
\rightarrow If $f(x, y)$ is within a tolerance of the isovalue, the pixel is part of the isoline.

advantages:

- reasonable image quality due to pixel-wise evaluation of function f
- different colors for different isovalues can easily be coded.

drawbacks:

- computationally intensive
- missing (parts of) isolines
- thickness of isoline varies

Pixel-by-Pixel Contouring

form of color mapping transfer function has a peak
thickness varies
some parts interrupted

Extraction of Isolines as Geometric Objects

- data grid is coarser than the pixel grid
- creating line segments by connecting intersection points of isolines and grid boundaries.

Marching Squares

input:

- data array
- isovalue c
output:
- line segments per grid cell
assumes bilinear interpolation
linear along grid edges
bilinear inside cells

Marching Squares

Isolines in a bilinear grid cell are hyperbolas
the Marching Squares algorithm approximates them as straight lines

Marching Squares

- Input: data array and isovalue c
- mark all vertices:

$$
\begin{aligned}
+\Rightarrow f_{i, j} & \geq c \\
& -\Rightarrow f_{i, j}<c
\end{aligned}
$$

- isoline passes only through cells with different signs at the four vertices (bilinear interpolation) $f_{\text {min }}=\min \left(f_{i, j}, f_{i+1, j}, f_{i, j+1}, f_{i+1, j+1}\right)$ $f_{\text {max }}=\max \left(f_{i, j}, f_{i+1, j}, f_{i, j+1}, f_{i+1, j+1}\right)$

$$
f_{\min } \leq c \leq f_{\max }
$$

- isoline can only intersect grid edges with different signs
 (property of linear interpolation)

Marching Squares

Only 4 different cases of sign combinations

Symmetries: rotation, reflection, change $+\leftrightarrow-$

- Compute intersections between isoline and cell edge
- Use linear interpolation along the cell edges
- Connect intersection points with straight line

Connection not straightforward for the case with different signs of opposite corners

Bilinear isolines: hyperbolas

switch takes place at the saddle's data value

Bilinear isolines: hyperbolas

- Consider bi-linear interpolation

$$
\begin{aligned}
f(x, y)= & f_{i, j}+\left(f_{i+1, j}-f_{i, j}\right) x+\left(f_{i, j+1}-f_{i, j}\right) y+ \\
& \left(f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}\right) x y
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{a}, y_{a}\right)= & f_{i, j}+\left(f_{i+1, j}-f_{i, j}\right) x_{a}+\left(f_{i, j+1}-f_{i, j}\right) y_{a}+ \\
& \left(f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}\right) x_{a} y_{a}=\beta
\end{aligned}
$$

Solve for x_{a} :

$$
\longrightarrow \quad x_{a}=\frac{\beta-\left(f_{i, j+1}-f_{i, j}\right) y_{a}-f_{i, j}}{\left(f_{i+1, j}-f_{i, j}\right)+\left(f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}\right) y_{a}}
$$

$$
\underset{y_{a} \rightarrow \infty}{\longrightarrow} \quad x_{a}=\frac{f_{i, j}-f_{i, j+1}}{f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}}
$$

Similar for y_{a} :

$$
y_{a}=\frac{f_{i, j}-f_{i+1, j}}{f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}}
$$

$$
\begin{aligned}
f\left(x_{a}, y_{a}\right)= & f_{i, j}+\left(f_{i+1, j}-f_{i, j}\right) x_{a}+\left(f_{i, j+1}-f_{i, j}\right) y_{a}+ \\
& \left(f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}\right) x_{a} y_{a}=\beta
\end{aligned}
$$

$$
\longrightarrow \quad f\left(x_{a}, y_{a}\right)=\frac{f_{i, j} f_{i+1, j+1}-f_{i+1, j} f_{i, j+1}}{f_{i+1, j+1}+f_{i, j}-f_{i+1, j}-f_{i, j+1}}
$$

```
if f(x, (x, ya)\geqc:
    connect (a,b) and (c,d)
else:
    connect (a,d) and (b,c)
```


- Decide based on value at saddle point

- Sort intersection points by their x or y coordinates
- Connect $(1,2)$ and $(3,4)$

Marching Squares

Input: data array and isovalue
Iterate over all grid cells
4 possible cell cases
Find intersection points of grid edges and isoline inverted linear interpolation

Draw isoline

- Marching squares processes data in cell order
- Traverse all cells of the grid
- Apply marching squares technique to each single cell

- Disadvantage of cell order method
- Every vertex (of the isoline) and every edge in the grid is processed twice
- The output is just a collection of pieces of isolines which have to be post-processed to get (closed) polylines
- Contour tracing approach
- Start at a seed point of the isoline
- Move to the neighboring cell into which the isoline enters
- Trace isoline until either
- Bounds of the domain are reached, or
- Isoline is closed

- Problem: How to find seed points efficiently?
- In a preprocessing step, mark all cells which have a sign change
- Remove marker from cells which are traversed during contour tracing (unless there are 4 intersection edges!)

Isosurfaces in 3D Scalar Fields

given:
scalar function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ isovalue $c \in \mathbb{R}$
definition of 3D contour:

$$
\{(x, y, z) \mid f(x, y, z)=c\}
$$

3D contours are surfaces
if f is differentiable and $\nabla f \neq \mathbf{0}$
common name: isosurfaces

Properties of Isosurfaces

closed surfaces
unless exiting the domain
tunnels may occur
cannot intersect each other
nested surfaces
points on isosurfaces have similar semantics
density of the surfaces reveals strength of the gradient

Properties of Isosurfaces

gradient is perpendicular to the isosurface
rate of change is zero along any isocontour

Properties of Isosurfaces

connected component:
a given isovalue produces one isocontour often consisting of several separate surfaces

very important

Isosurface Extraction

input:

- data array
- isovalue c
output:
- triangles per grid cell assumes trilinear interpolation
linear along grid edges bilinear inside faces
trilinear inside voxel

Isosurface Extraction

- Input: data array and isovalue c
- mark all vertices:

$$
\begin{aligned}
+\Rightarrow & f_{i, j, k} \geq c \bigcirc \\
& -\Rightarrow f_{i, j, k} \bigcirc c
\end{aligned}
$$

- tri-/bi-/linear interpolation:
- isosurface passes only through voxels with different signs at the eight vertices
- isosurface can only intersect grid faces with different signs at the vertices
- isosurface can only intersect grid edges with different signs

Isosurface Extraction

find edges with intersection shown in red
compute edge intersections
inverted linear interpolation

Isosurface Extraction

find edges with intersection
compute edge intersections
inverted linear interpolation
connect intersection points on each face use asymptotic decider

Isosurface Extraction

find edges with intersection compute edge intersections inverted linear interpolation
connect intersection points on each face use asymptotic decider

Isosurface Extraction

find edges with intersection compute edge intersections inverted linear interpolation
connect intersection points on each face use asymptotic decider

Isosurface Extraction

find edges with intersection compute edge intersections inverted linear interpolation
connect intersection points on each face use asymptotic decider
establish connected components
follow lines on the faces
this ignores topology inside voxel

Isosurface Extraction

find edges with intersection compute edge intersections inverted linear interpolation
connect intersection points on each face use asymptotic decider
establish connected components
follow lines on the faces
this ignores topology inside voxel
triangulate connected components

Isosurface Extraction

find edges with intersection
compute edge intersections
inverted linear interpolation
connect intersection points on each face use asymptotic decider
establish connected components
follow lines on the faces
this ignores topology inside voxel
triangulate connected components

Isosurface Extraction

find edges with intersection
compute edge intersections
inverted linear interpolation
connect intersection points on each face use asymptotic decider
establish connected components
follow lines on the faces
this ignores topology inside voxel
triangulate connected components

Isosurface Extraction

find edges with intersection compute edge intersections inverted linear interpolation
connect intersection points on each face use asymptotic decider
establish connected components
follow lines on the faces
this ignores topology inside voxel
triangulate connected components

Isosurface Extraction

find edges with intersection compute edge intersections inverted linear interpolation
connect intersection points on each face use asymptotic decider
establish connected components
follow lines on the faces
this ignores topology inside voxel
triangulate connected components

Isosurface Extraction: Overview

Possible Triangulations

Isosurface Rendering

Use gradient of scalar field for the normals of the triangle mesh, since the gradient is perpendicular to the isosurfaces

Higher-order derivatives pay off, since the human eye is very sensitive to lighting discontinuities

Isosurface Rendering

One can show several nested isosurfaces using varying levels of opacity

Inside the Trilinear Cell

Inside the Cell: Does it matter?

These details are below the sampling resolution of the data set.

Between the Cells: Does it matter?

Important to not create arbitrary holes in the isosurface.

from Newman \& Yi, A Survey of the Marching Cubes Algorithm, Computers \& Graphics, 2006

[^0]
The Marching Cubes (MC) algorithm

- Invented by Lorensen \& Cline 1987

Ambiguities fixed by Nielson \& Hamann 1991

- Addons, fixes, enhancements, history: Newman \& Yi, A Survey of the Marching Cubes Algorithm, Computers \& Graphics, 2006
- Approximates the surface using a triangle mesh; surface is found by linear interpolation along cell edges
- Triangulation using lookup tables
- Patented in the US 1985-2005
- THE standard geometry-based isosurface extraction algorithm

The Marching Cubes (MC) algorithm

1. Consider a cell
2. Classify each vertex as inside or outside
3. Build an index
4. Get per-cell triangulation from table[index]
5. Interpolate the edge location
6. Compute gradients (optional)
7. Consider ambiguous cases
8. Go to next cell

Consider a cell defined by eight data values

Classify each vertex according to whether it lies - outside the surface (value > isovalue c)

- inside the surface (value $<=$ isovalue c)

Use the binary labeling of each voxel to create an index

Index:

v1 v2 v3 v4 v5 v6 v7 v8
index

lookup-table

intersected edges
resulting triangles

```
typedef struct {
    unsigned char nverts; /* # vertices above threshold */
    unsigned char verts[8]; /* up to 8 vertices */
    unsigned char nedges;
    unsigned char edges[12];
    unsigned char ntris;
    } lt;
static const lt LUT[256] =
    {
/* 0 00000000 */ {
    0, {0, 0, 0, 0, 0, 0, 0, 0},
    0, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
    0, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
            },
/* 1 00000001 */ {
    1, {1, 0, 0, 0, 0, 0, 0, 0},
    3, {1, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0},
    1, {1, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
        },
/* 2 00000010 */ {
    1, {2, 0, 0, 0, 0, 0, 0, 0},
    3, {1,10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0},
    1, {1,10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
    },
/* 3 00000011 */ {
    2, {1, 2, 0, 0, 0, 0, 0, 0},
    4, {2, 4, 9,10, 0, 0, 0, 0, 0, 0, 0, 0},
    2, {2, 9,10, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0},
    },
```


For a given index, access an array storing a list of triangles and edges on which their vertices lie

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

All 256 cases can be derived from 15 base cases due to symmetries

original image from the MC paper for the triangulations

alternative pictures, different ordering

All 256 cases can be derived from 15 base cases due to symmetries

Get edge \& triangle list from table

Example for

Index $=01110010$
triangle $1=\mathrm{e} 4, \mathrm{e} 7, \mathrm{e} 11$
triangle $2=\mathrm{e} 1, \mathrm{e} 7, \mathrm{e} 4$
triangle $3=\mathrm{e} 1$, e6, e7
triangle $4=\mathrm{e} 1, \mathrm{e} 10, \mathrm{e} 6$

For each triangle edge, find the vertex location along the edge using linear interpolation of the voxel values

$$
\begin{aligned}
O & =10 \\
0 & =0
\end{aligned}
$$

Calculate the normal at each cube vertex

$$
\begin{aligned}
& \mathbf{g}_{i, j, k}=\left(\begin{array}{l}
\frac{\partial f\left(\mathbf{x}_{i, j, k}\right)}{\partial\left(_{x}\right.} \\
\frac{\partial f\left(\mathbf{x}_{i, j, k}\right)}{\partial y} \\
\frac{\partial f\left(\mathbf{x}_{i, j, k}\right)}{\partial z}
\end{array}\right) \approx\left(\begin{array}{l}
f_{i+1, j, k}-f_{i-1, j, k} \\
f_{i, j+1, k}-f_{i, j-1, k} \\
f_{i, j, k+1}-f_{i, j, k-1}
\end{array}\right) \\
& \mathbf{g}_{i, j, k}=\frac{\mathbf{g}_{i, j, k}}{\left\|\mathbf{g}_{i, j, k}\right\|} \\
& \text { - Use linear interpolation to compute } \\
& \text { the polygon vertex normal (of the } \\
& \text { isosurface) }
\end{aligned}
$$

Consider ambiguous cases

- Solve ambiguities using asymptotic decider similar to marching squares
- Consider ambiguous cases
- Ambiguous cases: $3,6,7,10,12,13$
- Adjacent vertices: different states
- Diagonal vertices: same state
- Resolution: decide for one case

- due to "The Asymptotic Decider", Nielson and Hamann, IEEE Vis 1991

- Marching Cubes: Summary
- 256 Cases
- Reduces to 15 cases by symmetry
- Ambiguity resides in cases

3, 6, 7, 10, 12, 13

- Causes holes if arbitrary choices are made

- Up to 5 triangles per cube
- Dataset of 512^{3} voxels can result in several million triangles
-> many Mbytes!

(c) Folygonal Apploximation

Optimizations for Isosurface Extraction

- Contour Propagation
- Prevent vertex replication
- Mesh simplification, many more...

Contour Propagation

- Acceleration of cell traversal
- Algorithm:
- Trace isosurface starting at a seed cell
- Breadth-first traversal along adjacent faces
- Finally, cycles are removed, based on marks at already traversed cells
- Problems:
- Find ALL connected components of the isosurface
- What is the optimal seed set?

Preventing Vertex Replication

- Based on a unique representation of edges shared by multiple voxels
- Requires a „ghost" layer of voxels along each axis

All edges (12)

Unique edges (3)

Isosurface at different time steps
Isosurface in 3D medical data set

Isosurface of a sphere in a low resolution grid

Marching Tetrahedra

[Shirley et al. 1990]
Works on tetrahedral grids
Application to structured grids possible split cuboid cells into tetrahedra

Process each tetrahedron similarly to the MC-algorithm

Marching Tetrahedra

Two different scenarios:

- one „-" and three „+" (or vice versa)
The surface is defined by one triangle
- two „-" and two „+"

Sectional surface given by a quadrilateral split it into two triangles using the shorter diagonal

Initial Cube
Five Tetrahedra

Initial Cube
Two Prisms
Six Tetrahedra

Marching Tetrahedra

Fewer cases than MC
3 cases instead of 15 cases for MC
no problems with consistency
between adjacent cells
Number of generated triangles might increase considerably compared to the MC-algorithm when splitting voxels into tetrahedra

Summary

- Geometry-based Scalar Field Visualization
- Contouring
- Properties of contours
- closed, cannot intersect, nested, gradient is perpendicular, ...
- 2D isoline extraction
- Marching Squares
- Asymptotic decider
- 3D isosurface extraction
- Direct computation without lookup table
- Marching Cubes
- Marching Tetrahedra

[^0]: from Nielsen \& Hamann, The Asymptotic Decider, IEEE Vis 1991

