
Visualization, DD2257

Prof. Dr. Tino Weinkauf

Geometry-based

Scalar Field Visualization

1D Function Plot

standard visualization of 1D

scalar fields

𝑓:ℝ → ℝ

sample function values
𝑥, 𝑓 𝑥 | 𝑥 ∈ ℝ

connect neighboring samples

polyline

Function Plot

𝑥

𝑓(𝑥)

0 5 10 15

1

2

3

4

2D Function Plot

function plots for 2D scalar

fields

𝑓:ℝ2 → ℝ

sample function values
𝑥, 𝑦, 𝑓 𝑥, 𝑦 | (𝑥, 𝑦) ∈ ℝ2

connect neighboring samples

surface

Height Plots

Isolines

given:

scalar function 𝑓:ℝ2 → ℝ
isovalue 𝑐 ∈ ℝ

definition of 2D contour:

𝑥, 𝑦 | 𝑓 𝑥, 𝑦 = 𝑐

2D contours are curves

if 𝑓 is differentiable and ∇𝑓 ≠ 𝟎

common name: isolines

Isolines in 2D Scalar Fields

very important

Isolines

closed curves

unless exiting the domain

cannot intersect each other

nested curves

points on isolines have similar

semantics

density of the lines reveals

strength of the gradient

Properties of Isolines

Isolines

gradient vector is

perpendicular to the isolines

rate of change is zero along isolines

Properties of Isolines

Isolines

connected component:

a given isovalue produces one

isocontour often consisting of

several separate lines

Properties of Isolines

three connected components making up one isocontour

Isolines

many connected components

if data set is noisy

Isabel data set, NCAR, USA

Properties of Isolines

Connected Components of Isolines under Smoothing

Isabel data set, NCAR, USA

height field isolines and color mapping

no smoothing

Connected Components of Isolines under Smoothing

Isabel data set, NCAR, USA. Smoothing method: Günther et al., VIS 2014

height field isolines and color mapping

mild topological smoothing

Connected Components of Isolines under Smoothing

Isabel data set, NCAR, USA. Smoothing method: Günther et al., VIS 2014

height field isolines and color mapping

strong topological smoothing

Isolines

annotate with isovalues

Applications of Isolines

Isolines

can be applied to slices in 3D

scalar fields

Applications of Isolines

● grid-based contouring

● pixel-by-pixel contouring

● marching squares

● grid-free contouring

Contouring

Computation of Isolines

Overlay a pixel grid onto the domain. For each pixel, 𝑓(𝑥, 𝑦) is computed.

➔ If 𝑓(𝑥, 𝑦) is within a tolerance of the isovalue, the pixel is part of the isoline.

advantages:

● reasonable image quality due to pixel-wise evaluation of function 𝑓

● different colors for different isovalues can easily be coded.

drawbacks:

● computationally intensive

● missing (parts of) isolines

● thickness of isoline varies

Pixel-by-Pixel Contouring

Computation of Isolines

Computation of Isolines

form of color mapping

transfer function has a peak

thickness varies

some parts interrupted

Pixel-by-Pixel Contouring

● data grid is coarser than the pixel grid

● creating line segments by connecting intersection points of isolines and grid

boundaries.

Extraction of Isolines as Geometric Objects

Computation of Isolinesvery important

Computation of Isolines

input:

● data array

● isovalue 𝑐

output:

● line segments per grid cell

assumes bilinear interpolation

linear along grid edges

bilinear inside cells

Marching Squares

very important

𝑓𝑖,𝑗 𝑓𝑖+1,𝑗

𝑓𝑖,𝑗+1 𝑓𝑖+1,𝑗+1linear interpolation

bilinear interpolation

Computation of Isolines

Isolines in a bilinear grid cell

are hyperbolas

the Marching Squares

algorithm approximates them

as straight lines

Marching Squares

Computation of Isolines

● Input: data array and isovalue 𝑐

● mark all vertices:

+⇒ 𝑓𝑖,𝑗 ≥ 𝑐

−⇒ 𝑓𝑖,𝑗 < 𝑐

● isoline passes only through cells

with different signs at the four

vertices (bilinear interpolation)

● isoline can only intersect grid

edges with different signs

(property of linear interpolation)

Marching Squares

+ + + +

+ + + +

+ + +

+

–

–––

Computation of Isolines

Only 4 different cases of sign

combinations

Symmetries: rotation,

reflection, change + ↔ -

Marching Squares

+/- +/-

+/- +/-

all same sign

+ +

+ +

+ +

+ -

+ -

+ -

+ -

- +

one sign

different

two signs

different on

the same side

two signs

different on

opposite

corners

+ +

+ -

+ +

+ -

+ +

+ -

+ +

--

+ +

-

+ +

-

Computation of Isolines

● Compute intersections between isoline and cell edge

● Use linear interpolation along the cell edges

● Connect intersection points with straight line

- -

Computation of Isolines

Connection not straightforward for

the case with different signs of

opposite corners

+

+ -

- +

+ -

-

+

+ -

-

+

+ -

-

?

Computation of Isolines

Bilinear isolines: hyperbolas

?

Computation of Isolines

+

+

-

-

+

+

-

-

+

+

-

-

increasing isovalue

saddle point

switch takes place

at the saddle’s data value

Computation of Isolines

Bilinear isolines: hyperbolas

asymptote

asymptote

saddle point

Asymptote

Cell boundaries

Asymptote

How to find the asymptote intersection?

● Consider bi-linear interpolation

How to find the asymptote intersection?

Similar for :

Solve for :

How to find the asymptote intersection?

if 𝑓 𝑥𝑎, 𝑦𝑎 ≥ 𝑐:
connect (a,b) and (c,d)

else:

connect (a,d) and (b,c)

+ -

- +

d

c

b

a

“Asymptotic Decider”

+

+ -

-

+

+ -

-

+

+ -

-

?
+

+ -

-

+

+

+ -

-

-

Asymptotic Decider

● Decide based on value at saddle point

Asymptotic decider: alternative way

+

+

-

-

x-axis

y-axis

1 2 3 4

1

2

3

4

• Sort intersection points by their x or y coordinates

• Connect (1,2) and (3,4)

Summary of Marching Squares Algorithm

Input: data array and isovalue

Iterate over all grid cells

4 possible cell cases

Find intersection points of grid

edges and isoline

inverted linear interpolation

Draw isoline

Marching Squares

very important

+ + + +

+ + + +

+ + +

+

–

–––

Cell-Order Contouring

● Marching squares processes data in cell order

● Traverse all cells of the grid

● Apply marching squares technique to each single cell

● Disadvantage of cell order method

● Every vertex (of the isoline) and every edge in the grid is processed twice

● The output is just a collection of pieces of isolines which have to be post-processed to get

(closed) polylines

Contour Tracing

● Contour tracing approach

● Start at a seed point of the isoline

● Move to the neighboring cell into which the isoline enters

● Trace isoline until either

● Bounds of the domain are reached, or

● Isoline is closed

● Problem: How to find seed points efficiently?

● In a preprocessing step, mark all cells which have a sign change

● Remove marker from cells which are traversed during contour tracing (unless there are 4

intersection edges!)

Isosurfaces

given:

scalar function 𝑓:ℝ3 → ℝ
isovalue 𝑐 ∈ ℝ

definition of 3D contour:

𝑥, 𝑦, 𝑧 | 𝑓 𝑥, 𝑦, 𝑧 = 𝑐

3D contours are surfaces

if 𝑓 is differentiable and ∇𝑓 ≠ 𝟎

common name: isosurfaces

Isosurfaces in 3D Scalar Fields

very important

Isosurfaces

closed surfaces

unless exiting the domain

tunnels may occur

cannot intersect each other

nested surfaces

points on isosurfaces have

similar semantics

density of the surfaces reveals

strength of the gradient

Properties of Isosurfaces

Isosurfaces

gradient is perpendicular to

the isosurface

rate of change is zero along any

isocontour

Properties of Isosurfaces

Isosurfaces

connected component:

a given isovalue produces one

isocontour often consisting of

several separate surfaces

Properties of Isosurfaces

the isocontour with medium opacity

consists of two connected components

input:

● data array

● isovalue 𝑐

output:

● triangles per grid cell

assumes trilinear interpolation

linear along grid edges

bilinear inside faces

trilinear inside voxel

Isosurface Extraction

very important

linear interpolation

bilinear interpolationtrilinear interpolation

● Input: data array and

isovalue 𝑐

● mark all vertices:

+⇒ 𝑓𝑖,𝑗,𝑘 ≥ 𝑐

−⇒ 𝑓𝑖,𝑗,𝑘 < 𝑐

● tri-/bi-/linear interpolation:
● isosurface passes only through

voxels with different signs at the

eight vertices

● isosurface can only intersect grid

faces with different signs at the

vertices

● isosurface can only intersect grid

edges with different signs

Isosurface Extraction

find edges with intersection

shown in red

compute edge intersections

inverted linear interpolation

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

Isosurface Extraction

A possible result of the asymptotic decider

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

Isosurface Extraction

Another possible result of the asymptotic decider

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction

find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction

Isosurface Extraction: Overview

Input

Decider

Possible Triangulations

Use gradient of scalar field for

the normals of the triangle

mesh, since the gradient is

perpendicular to the

isosurfaces

Higher-order derivatives pay

off, since the human eye is

very sensitive to lighting

discontinuities

Isosurface Rendering

Trefoil data set from Candelaresi et al., Decay of trefoil and other magnetic knots. In Proc. Advances in Plasma Astrophysics, 2011

One can show several nested

isosurfaces using varying

levels of opacity

Isosurface Rendering

Inside the Trilinear Cell

Computation of Isosurfaces

possible isosurfaces

with the same

footprint on the boundary

Details:

Habilitation Thesis of Holger Theisel

University of Rostock, 2001

2D and 3D Contouring

Inside the Cell: Does it matter?

+

+ -

-

?

These details are below the sampling resolution of the data set.

3D Contouring

Between the Cells: Does it matter?

Important to not create arbitrary holes in the isosurface.

from Newman & Yi, A Survey of the Marching Cubes Algorithm,

Computers & Graphics, 2006

from Nielsen & Hamann, The Asymptotic Decider, IEEE Vis 1991

● Invented by Lorensen & Cline 1987

Ambiguities fixed by Nielson & Hamann 1991

● Addons, fixes, enhancements, history: Newman & Yi, A Survey of the Marching

Cubes Algorithm, Computers & Graphics, 2006

● Approximates the surface using a triangle mesh; surface is found by linear

interpolation along cell edges

● Triangulation using lookup tables

● Patented in the US 1985 – 2005

● THE standard geometry-based isosurface extraction algorithm

The Marching Cubes (MC) algorithm

Computation of Isosurfacesvery important

1. Consider a cell

2. Classify each vertex as inside or outside

3. Build an index

4. Get per-cell triangulation from table[index]

5. Interpolate the edge location

6. Compute gradients (optional)

7. Consider ambiguous cases

8. Go to next cell

The Marching Cubes (MC) algorithm

Computation of Isosurfaces

Marching Cubes: Step 1

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)

Consider a cell defined by eight data values

Marching Cubes: Step 2

8

c=7

8

8

5
5

1010

10

c=9

=inside

=outside

Classify each vertex according to whether it lies
• outside the surface (value > isovalue c)
• inside the surface (value <= isovalue c)

Marching Cubes: Step 3

v1 v2

v6

v3v4

v7v8

v5

inside = 1
outside = 0

11110100

00110000

Index:
v1 v2 v3 v4 v5 v6 v7 v8

Use the binary labeling of each voxel
to create an index

Marching Cubes: Step 4.1

typedef struct {
unsigned char nverts; /* # vertices above threshold */
unsigned char verts[8]; /* up to 8 vertices */
unsigned char nedges; /* # edges to be intersected */
unsigned char edges[12]; /* up to 12 edges */
unsigned char ntris; /* # triangles to be generated */
unsigned char tri_edges[15]; /* up to 5 triangles */

} lt;

static const lt LUT[256] =
{

/* 0 00000000 */ {
0, {0, 0, 0, 0, 0, 0, 0, 0},
0, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
0, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},
/* 1 00000001 */ {

1, {1, 0, 0, 0, 0, 0, 0, 0},
3, {1, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1, {1, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},
/* 2 00000010 */ {

1, {2, 0, 0, 0, 0, 0, 0, 0},
3, {1,10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1, {1,10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},
/* 3 00000011 */ {

2, {1, 2, 0, 0, 0, 0, 0, 0},
4, {2, 4, 9,10, 0, 0, 0, 0, 0, 0, 0, 0},
2, {2, 9,10, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},

index

lookup-table

intersected edges

resulting triangles

Marching Cubes: Step 4.1

For a given index, access an array storing a list of triangles
and edges on which their vertices lie

All 256 cases can be derived from 15 base cases due to symmetries

Image from Newman & Yi, A Survey of the Marching Cubes Algorithm, Computers & Graphics, 2006

Marching Cubes: Step 4.1

original image from
the MC paper for the

triangulations

Marching Cubes: Step 4.1

alternative pictures, different ordering

All 256 cases can be derived from 15 base cases due to symmetries

Marching Cubes: Step 4.2

e1
e10

e6

e7
e11

e4

Get edge & triangle list from table

Example for

Index = 01110010

triangle 1 = e4, e7, e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6

Marching Cubes: Step 5

For each triangle edge, find the vertex location
along the edge using linear interpolation of the

voxel values

Marching Cubes: Step 6

● Use linear interpolation to compute

the polygon vertex normal (of the

isosurface)

Calculate the normal at each cube vertex

Marching Cubes: Step 7

Consider ambiguous cases

• Solve ambiguities using asymptotic decider
similar to marching squares

Marching Cubes: Step 7

● Consider ambiguous cases

● Ambiguous cases: 3, 6, 7, 10, 12, 13

● Adjacent vertices: different states

● Diagonal vertices: same state

● Resolution: decide for one case

● due to “The Asymptotic Decider”,

Nielson and Hamann,

IEEE Vis 1991

or

or

Computation of Isosurfaces

● Marching Cubes: Summary

● 256 Cases

● Reduces to 15 cases by symmetry

● Ambiguity resides in cases

3, 6, 7, 10, 12, 13

● Causes holes if arbitrary choices are

made

● Up to 5 triangles per cube

● Dataset of 5123 voxels can result in

several million triangles

-> many Mbytes!

● Contour Propagation

● Prevent vertex replication

● Mesh simplification, many more…

Optimizations for Isosurface Extraction

Computation of Isosurfaces

Computation of Isosurfaces

Contour Propagation

● Acceleration of cell traversal

● Algorithm:

● Trace isosurface starting at a seed cell

● Breadth-first traversal along adjacent faces

● Finally, cycles are removed, based on marks at already traversed cells

● Problems:

● Find ALL connected components of the isosurface

● What is the optimal seed set?

Computation of Isosurfaces

Preventing Vertex Replication

● Based on a unique representation of edges shared by multiple voxels

● Requires a „ghost“ layer of voxels along each axis

2
3

4

5

1

6
8

7

10 11

12

9

All edges (12)

2

3

1

Unique edges (3)

Examples

Isosurface at different time steps Isosurface in 3D medical data set

Isosurface of a sphere in a low resolution grid

Examples

Computation of Isosurfaces

[Shirley et al. 1990]

Works on tetrahedral grids

Application to structured grids possible

split cuboid cells into tetrahedra

Process each tetrahedron similarly to

the MC-algorithm

Marching Tetrahedra

Computation of Isosurfaces

Two different scenarios:

● one „–“ and three „+“ (or

vice versa)

The surface is defined by

one triangle

● two „–“ and two „+“

Sectional surface given by

a quadrilateral –

split it into two triangles

using the shorter diagonal

Marching Tetrahedra

Cube to Tetrahedra Howto

Initial Cube Five Tetrahedra

Two PrismsInitial Cube Six Tetrahedra

Computation of Isosurfaces

Fewer cases than MC

3 cases instead of 15 cases for MC

no problems with consistency

between adjacent cells

Number of generated triangles

might increase considerably

compared to the MC-algorithm

when splitting voxels into

tetrahedra

Marching Tetrahedra

● Geometry-based Scalar Field Visualization

● Contouring

● Properties of contours

● closed, cannot intersect, nested, gradient is perpendicular, …

● 2D isoline extraction

● Marching Squares

● Asymptotic decider

● 3D isosurface extraction

● Direct computation without lookup table

● Marching Cubes

● Marching Tetrahedra

Summary

Scalar Field Visualization

