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1D Function Plot

standard visualization of 1D 

scalar fields

𝑓:ℝ → ℝ

sample function values
𝑥, 𝑓 𝑥 | 𝑥 ∈ ℝ

connect neighboring samples

polyline

Function Plot

𝑥
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2D Function Plot

function plots for 2D scalar 

fields

𝑓:ℝ2 → ℝ

sample function values
𝑥, 𝑦, 𝑓 𝑥, 𝑦 | (𝑥, 𝑦) ∈ ℝ2

connect neighboring samples

surface

Height Plots



Isolines

given:

scalar function 𝑓:ℝ2 → ℝ
isovalue 𝑐 ∈ ℝ

definition of 2D contour:

𝑥, 𝑦 | 𝑓 𝑥, 𝑦 = 𝑐

2D contours are curves

if 𝑓 is differentiable and ∇𝑓 ≠ 𝟎

common name: isolines

Isolines in 2D Scalar Fields

very important



Isolines

closed curves

unless exiting the domain

cannot intersect each other

nested curves

points on isolines have similar 

semantics

density of the lines reveals 

strength of the gradient

Properties of Isolines



Isolines

gradient vector is 

perpendicular to the isolines

rate of change is zero along isolines

Properties of Isolines



Isolines

connected component:

a given isovalue produces one 

isocontour often consisting of 

several separate lines

Properties of Isolines

three connected components making up one isocontour



Isolines

many connected components 

if data set is noisy

Isabel data set, NCAR, USA

Properties of Isolines



Connected Components of Isolines under Smoothing

Isabel data set, NCAR, USA

height field isolines and color mapping

no smoothing



Connected Components of Isolines under Smoothing

Isabel data set, NCAR, USA. Smoothing method: Günther et al., VIS 2014

height field isolines and color mapping

mild topological smoothing



Connected Components of Isolines under Smoothing

Isabel data set, NCAR, USA. Smoothing method: Günther et al., VIS 2014

height field isolines and color mapping

strong topological smoothing



Isolines

annotate with isovalues

Applications of Isolines



Isolines

can be applied to slices in 3D 

scalar fields

Applications of Isolines



● grid-based contouring

● pixel-by-pixel contouring

● marching squares

● grid-free contouring

Contouring

Computation of Isolines



Overlay a pixel grid onto the domain. For each pixel, 𝑓(𝑥, 𝑦) is computed.

➔ If 𝑓(𝑥, 𝑦) is within a tolerance of the isovalue, the pixel is part of the isoline.

advantages:

● reasonable image quality due to pixel-wise evaluation of function 𝑓

● different colors for different isovalues can easily be coded. 

drawbacks:

● computationally intensive

● missing (parts of) isolines

● thickness of isoline varies

Pixel-by-Pixel Contouring

Computation of Isolines



Computation of Isolines

form of color mapping

transfer function has a peak

thickness varies

some parts interrupted

Pixel-by-Pixel Contouring



● data grid is coarser than the pixel grid 

● creating line segments by connecting intersection points of isolines and grid 

boundaries.

Extraction of Isolines as Geometric Objects

Computation of Isolinesvery important



Computation of Isolines

input:

● data array

● isovalue 𝑐

output:

● line segments per grid cell

assumes bilinear interpolation

linear along grid edges

bilinear inside cells

Marching Squares

very important

𝑓𝑖,𝑗 𝑓𝑖+1,𝑗

𝑓𝑖,𝑗+1 𝑓𝑖+1,𝑗+1linear interpolation

bilinear interpolation



Computation of Isolines

Isolines in a bilinear grid cell 

are hyperbolas

the Marching Squares 

algorithm approximates them 

as straight lines

Marching Squares



Computation of Isolines

● Input: data array and isovalue 𝑐

● mark all vertices:

+⇒ 𝑓𝑖,𝑗 ≥ 𝑐

−⇒ 𝑓𝑖,𝑗 < 𝑐

● isoline passes only through cells 

with different signs at the four 

vertices (bilinear interpolation)

● isoline can only intersect grid 

edges with different signs

(property of linear interpolation)

Marching Squares

+ + + +

+ + + +

+ + +

+

–

–––



Computation of Isolines

Only 4 different cases of sign 

combinations

Symmetries: rotation, 

reflection, change + ↔ -

Marching Squares

+/- +/-

+/- +/-

all same sign

+ +

+ +

+ +

+ -

+ -

+ -

+ -

- +

one sign 

different

two signs 

different on 

the same side

two signs 

different on 

opposite 

corners



+ +

+ -

+ +

+ -

+ +

+ -

+ +

--

+ +

-

+ +

-

Computation of Isolines

● Compute intersections between isoline and cell edge

● Use linear interpolation along the cell edges

● Connect intersection points with straight line

- -



Computation of Isolines

Connection not straightforward for 

the case with different signs of 

opposite corners

+

+ -

- +

+ -

-

+

+ -

-

+

+ -

-

?



Computation of Isolines

Bilinear isolines: hyperbolas

?



Computation of Isolines

+

+

-

-

+

+

-

-

+

+

-

-

increasing isovalue

saddle point

switch takes place

at the saddle’s data value



Computation of Isolines

Bilinear isolines: hyperbolas

asymptote

asymptote

saddle point



Asymptote

Cell boundaries

Asymptote

How to find the asymptote intersection?

● Consider bi-linear interpolation



How to find the asymptote intersection?

Similar for     :

Solve for     :



How to find the asymptote intersection?

if 𝑓 𝑥𝑎, 𝑦𝑎 ≥ 𝑐:
connect (a,b) and (c,d)

else:

connect (a,d) and (b,c)

+ -

- +

d

c

b

a

“Asymptotic Decider”
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+ -
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Asymptotic Decider

● Decide based on value at saddle point



Asymptotic decider: alternative way

+

+

-

-

x-axis

y-axis

1 2 3 4

1

2

3

4

• Sort intersection points by their x or y coordinates

• Connect (1,2) and (3,4)



Summary of Marching Squares Algorithm

Input: data array and isovalue 

Iterate over all grid cells

4 possible cell cases

Find intersection points of grid 

edges and isoline

inverted linear interpolation

Draw isoline

Marching Squares

very important

+ + + +

+ + + +

+ + +

+

–

–––



Cell-Order Contouring

● Marching squares processes data in cell order

● Traverse all cells of the grid

● Apply marching squares technique to each single cell

● Disadvantage of cell order method

● Every vertex (of the isoline) and every edge in the grid is processed twice

● The output is just a collection of pieces of isolines which have to be post-processed to get 

(closed) polylines



Contour Tracing

● Contour tracing approach

● Start at a seed point of the isoline

● Move to the neighboring cell into which the isoline enters

● Trace isoline until either

● Bounds of the domain are reached, or

● Isoline is closed

● Problem: How to find seed points efficiently?

● In a preprocessing step, mark all cells which have a sign change

● Remove marker from cells which are traversed during contour tracing (unless there are 4 

intersection edges! )



Isosurfaces

given:

scalar function 𝑓:ℝ3 → ℝ
isovalue 𝑐 ∈ ℝ

definition of 3D contour:

𝑥, 𝑦, 𝑧 | 𝑓 𝑥, 𝑦, 𝑧 = 𝑐

3D contours are surfaces

if 𝑓 is differentiable and ∇𝑓 ≠ 𝟎

common name: isosurfaces

Isosurfaces in 3D Scalar Fields

very important



Isosurfaces

closed surfaces

unless exiting the domain

tunnels may occur

cannot intersect each other

nested surfaces

points on isosurfaces have 

similar semantics

density of the surfaces reveals 

strength of the gradient

Properties of Isosurfaces



Isosurfaces

gradient is perpendicular to 

the isosurface

rate of change is zero along any 

isocontour

Properties of Isosurfaces



Isosurfaces

connected component:

a given isovalue produces one 

isocontour often consisting of 

several separate surfaces

Properties of Isosurfaces

the isocontour with medium opacity

consists of two connected components



input:

● data array

● isovalue 𝑐

output:

● triangles per grid cell

assumes trilinear interpolation

linear along grid edges

bilinear inside faces

trilinear inside voxel

Isosurface Extraction

very important

linear interpolation

bilinear interpolationtrilinear interpolation



● Input: data array and 

isovalue 𝑐

● mark all vertices:

+⇒ 𝑓𝑖,𝑗,𝑘 ≥ 𝑐

−⇒ 𝑓𝑖,𝑗,𝑘 < 𝑐

● tri-/bi-/linear interpolation:
● isosurface passes only through 

voxels with different signs at the 

eight vertices

● isosurface can only intersect grid 

faces with different signs at the 

vertices

● isosurface can only intersect grid 

edges with different signs

Isosurface Extraction



find edges with intersection

shown in red

compute edge intersections

inverted linear interpolation

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

Isosurface Extraction

A possible result of the asymptotic decider



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

Isosurface Extraction

Another possible result of the asymptotic decider



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction



find edges with intersection

compute edge intersections

inverted linear interpolation

connect intersection points on each face

use asymptotic decider

establish connected components

follow lines on the faces

this ignores topology inside voxel

triangulate connected components

Isosurface Extraction



Isosurface Extraction: Overview

Input

Decider

Possible Triangulations



Use gradient of scalar field for 

the normals of the triangle 

mesh, since the gradient is 

perpendicular to the 

isosurfaces

Higher-order derivatives pay 

off, since the human eye is 

very sensitive to lighting 

discontinuities

Isosurface Rendering

Trefoil data set from Candelaresi et al., Decay of trefoil and other magnetic knots. In Proc. Advances in Plasma Astrophysics, 2011 



One can show several nested 

isosurfaces using varying 

levels of opacity

Isosurface Rendering



Inside the Trilinear Cell

Computation of Isosurfaces

possible isosurfaces

with the same

footprint on the boundary

Details:

Habilitation Thesis of Holger Theisel

University of Rostock, 2001



2D and 3D Contouring

Inside the Cell: Does it matter?

+

+ -

-

?

These details are below the sampling resolution of the data set.



3D Contouring

Between the Cells: Does it matter?

Important to not create arbitrary holes in the isosurface.

from Newman & Yi, A Survey of the Marching Cubes Algorithm, 

Computers & Graphics, 2006

from Nielsen & Hamann, The Asymptotic Decider, IEEE Vis 1991



● Invented by Lorensen & Cline 1987

Ambiguities fixed by Nielson & Hamann 1991

● Addons, fixes, enhancements, history: Newman & Yi, A Survey of the Marching 

Cubes Algorithm, Computers & Graphics, 2006

● Approximates the surface using a triangle mesh; surface is found by linear 

interpolation along cell edges

● Triangulation using lookup tables

● Patented in the US 1985 – 2005

● THE standard geometry-based isosurface extraction algorithm

The Marching Cubes (MC) algorithm

Computation of Isosurfacesvery important



1. Consider a cell

2. Classify each vertex as inside or outside

3. Build an index

4. Get per-cell triangulation from table[index]

5. Interpolate the edge location

6. Compute gradients (optional)

7. Consider ambiguous cases

8. Go to next cell

The Marching Cubes (MC) algorithm

Computation of Isosurfaces



Marching Cubes: Step 1

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)

Consider a cell defined by eight data values



Marching Cubes: Step 2

8

c=7

8

8

5
5

1010

10

c=9

=inside

=outside

Classify each vertex according to whether it lies
• outside the surface (value > isovalue c)
• inside the surface (value <= isovalue c)



Marching Cubes: Step 3

v1 v2

v6

v3v4

v7v8

v5

inside    = 1
outside = 0

11110100

00110000

Index:
v1 v2 v3 v4 v5 v6 v7 v8

Use the binary labeling of each voxel
to create an index



Marching Cubes: Step 4.1

typedef struct {
unsigned char nverts; /* # vertices above threshold */
unsigned char verts[8]; /* up to 8 vertices */ 
unsigned char nedges; /* # edges to be intersected */
unsigned char edges[12]; /* up to 12 edges */
unsigned char ntris; /* # triangles to be generated */
unsigned char tri_edges[15]; /* up to 5 triangles */

} lt;

static const lt LUT[256] =
{

/*   0    00000000 */      {
0, {0, 0, 0, 0, 0, 0, 0, 0},
0, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
0, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},
/*   1    00000001 */      {

1, {1, 0, 0, 0, 0, 0, 0, 0},
3, {1, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1, {1, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},
/*   2    00000010 */      {

1, {2, 0, 0, 0, 0, 0, 0, 0},
3, {1,10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1, {1,10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},
/*   3    00000011 */      {

2, {1, 2, 0, 0, 0, 0, 0, 0},
4, {2, 4, 9,10, 0, 0, 0, 0, 0, 0, 0, 0},
2, {2, 9,10, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0},

},

index

lookup-table

intersected edges

resulting triangles



Marching Cubes: Step 4.1

For a given index, access an array storing a list of triangles 
and edges on which their vertices lie

All 256 cases can be derived from 15 base cases due to symmetries

Image from Newman & Yi, A Survey of the Marching Cubes Algorithm, Computers & Graphics, 2006



Marching Cubes: Step 4.1

original image from 
the MC paper for the 

triangulations



Marching Cubes: Step 4.1

alternative pictures, different ordering

All 256 cases can be derived from 15 base cases due to symmetries



Marching Cubes: Step 4.2

e1
e10

e6

e7
e11

e4

Get edge & triangle list from table

Example for

Index = 01110010

triangle 1 = e4, e7, e11
triangle 2 = e1, e7, e4
triangle 3 = e1, e6, e7
triangle 4 = e1, e10, e6



Marching Cubes: Step 5

For each triangle edge, find the vertex location 
along the edge using linear interpolation of the 

voxel values



Marching Cubes: Step 6

● Use linear interpolation to compute 

the polygon vertex normal (of the 

isosurface)

Calculate the normal at each cube vertex



Marching Cubes: Step 7

Consider ambiguous cases

• Solve ambiguities using asymptotic decider
similar to marching squares



Marching Cubes: Step 7

● Consider ambiguous cases

● Ambiguous cases: 3, 6, 7, 10, 12, 13

● Adjacent vertices: different states

● Diagonal vertices: same state

● Resolution: decide for one case

● due to “The Asymptotic Decider”, 

Nielson and Hamann,

IEEE Vis 1991

or

or



Computation of Isosurfaces

● Marching Cubes: Summary

● 256 Cases

● Reduces to 15 cases by symmetry

● Ambiguity resides in cases 

3, 6, 7, 10, 12, 13

● Causes holes if arbitrary choices are

made

● Up to 5 triangles per cube

● Dataset of 5123 voxels can result in 

several million triangles

-> many Mbytes!



● Contour Propagation

● Prevent vertex replication

● Mesh simplification, many more…

Optimizations for Isosurface Extraction

Computation of Isosurfaces



Computation of Isosurfaces

Contour Propagation

● Acceleration of cell traversal

● Algorithm:

● Trace isosurface starting at a seed cell

● Breadth-first traversal along adjacent faces

● Finally, cycles are removed, based on marks at already traversed cells

● Problems:

● Find ALL connected components of the isosurface

● What is the optimal seed set?



Computation of Isosurfaces

Preventing Vertex Replication

● Based on a unique representation of edges shared by multiple voxels

● Requires a „ghost“ layer of voxels along each axis

2
3

4

5

1

6
8

7

10 11

12

9

All edges (12)

2

3

1

Unique edges (3)



Examples

Isosurface at different time steps Isosurface in 3D medical data set



Isosurface of a sphere in a low resolution grid

Examples



Computation of Isosurfaces

[Shirley et al. 1990]

Works on tetrahedral grids

Application to structured grids possible

split cuboid cells into tetrahedra

Process each tetrahedron similarly to 

the MC-algorithm

Marching Tetrahedra



Computation of Isosurfaces

Two different scenarios:

● one „–“ and three „+“ (or 

vice versa)

The surface is defined by 

one triangle

● two „–“ and two „+“

Sectional surface given by 

a quadrilateral –

split it into two triangles 

using the shorter diagonal 

Marching Tetrahedra



Cube to Tetrahedra Howto

Initial Cube Five Tetrahedra

Two PrismsInitial Cube Six Tetrahedra



Computation of Isosurfaces

Fewer cases than MC

3 cases instead of 15 cases for MC

no problems with consistency 

between adjacent cells

Number of generated triangles 

might increase considerably 

compared to the MC-algorithm 

when splitting voxels into 

tetrahedra

Marching Tetrahedra



● Geometry-based Scalar Field Visualization

● Contouring

● Properties of contours

● closed, cannot intersect, nested, gradient is perpendicular, …

● 2D isoline extraction

● Marching Squares

● Asymptotic decider

● 3D isosurface extraction

● Direct computation without lookup table

● Marching Cubes

● Marching Tetrahedra

Summary

Scalar Field Visualization


