
Visualization, DD2257

Prof. Dr. Tino Weinkauf

Data Description

Sampled Data



Digital Data



Scientific Data



Sampled Data

● In most cases, the visualization data represents a continuous real object, e.g., 

an oscillating membrane, a velocity field around a body, an organ, human tissue, 

etc.

● This object lives in an n-dimensional space - the domain (aka. observation space)

● Usually, the data is only given at a finite set of locations, or samples, in space 

and/or time

● Remember imaging processes like numerical simulation and CT-scanning, note similarity to 

pixel images

● We call this a discrete representation of a continuous object



Sampled Data

We usually deal with the 

reconstruction of a 

continuous real object from a 

given discrete representation.

Discrete Representations



Sampled Data

We usually deal with the 

reconstruction of a 

continuous real object from a 

given discrete representation.

Samples are connected to 

each other to form grids / 

meshes, covering the entire 

domain.

Discrete Representations

what is the 
value here?

interpolation

reconstructs a 

continuous function



Grid terminology

Sampled Data

0D: grid vertex

(grid point)

1D: grid line

2D: grid face

grid cell: largest-dimensional 

element in a grid

2D: grid face

3D: grid voxel

3D: grid voxel

grid vertices

grid lines

grid faces

grid voxel



Sampled Data

Operations on Grids

● Determine the data value at a position

● Easy at the grid vertices 

● At other positions: Interpolation Schemes

● Determine neighbors

● Convert to other grid types

● Compute metrics

● Distance, Area, Volume

● Compute Bounding Box



Sampled Data

Data Connectivity

● There are different types of grids:

● Structured grids

connectivity is implicitly given.

● Block-structured grids

combination of several structured grids

● Unstructured grids

connectivity is explicitly given.

● Hybrid grids

combination of different grid types



Sampled Data

Structured grids

● “Structured” refers to the matrix-like connectivity between the grid vertices

● We distinguish different types of structured grids regarding the alignment to the 

coordinate system and the size of cells

uniform grid
axis-aligned, identical cells

implicitly given coordinates

rectilinear grid
axis-aligned, cells different size

semi-implicitly given coordinates

curvilinear grid
not axis-aligned, cells different size

explicitly given coordinates

very important



Sampled Data

Structured grids

● Number of grid vertices: 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧

● We can address every grid vertex with an index tuple (i, j, k)

● 0 ≤ 𝑖 < 𝑛𝑥 0 ≤ 𝑗 < 𝑛𝑦 0 ≤ 𝑘 < 𝑛𝑧

𝑛𝑥

𝑛𝑦

𝑛𝑥

𝑛𝑦

𝑛𝑥

𝑛𝑦

𝑖, 𝑗 = 2,3 𝑖, 𝑗 = 2,3 𝑖, 𝑗 = 2,3

uniform grid
axis-aligned, identical cells

implicitly given coordinates

rectilinear grid
axis-aligned, cells different size

semi-implicitly given coordinates

curvilinear grid
not axis-aligned, cells different size

explicitly given coordinates



Sampled Data

Structured grids

● Number of grid vertices: 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧

● We can address every grid cell with an index tuple (i, j, k)

● 0 ≤ 𝑖 < 𝑛𝑥 − 1 0 ≤ 𝑗 < 𝑛𝑦 − 1 0 ≤ 𝑘 < 𝑛𝑧 − 1

● ➔ Number of cells: 𝑛𝑥 − 1 × 𝑛𝑦 − 1 × (𝑛𝑧 − 1)

𝑛𝑥

𝑛𝑦

𝑛𝑥

𝑛𝑦

𝑛𝑥

𝑛𝑦

uniform grid
axis-aligned, identical cells

implicitly given coordinates

rectilinear grid
axis-aligned, cells different size

semi-implicitly given coordinates

curvilinear grid
not axis-aligned, cells different size

explicitly given coordinates



Sampled Data

Regular or uniform grids

● Cells are rectangles or rectangular cuboids of the same size

● All grid lines are parallel to the axes

● To define a uniform grid, we need the following:

● Bounding box: 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 − (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥)

● Number of grid vertices in each dimension: 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧

➔ from that information we can derive the Cell size: 𝑑𝑥 , 𝑑𝑦, 𝑑𝑧



Sampled Data

Regular or uniform grids

● Well suited for image data (medical applications)

● Coordinate ➔ cell is very simple and cheap

● Global search is good enough; local search not required

● Coordinate of a grid vertex:

+ 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛



Sampled Data

Cartesian grid

● Special case of a uniform grid: 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧

● Consists of squares (2D), cubes (3D)



Sampled Data

Rectilinear grids

● Cells are rectangles of different sizes

● All grid lines are parallel to the axes

● Vertex locations are inferred from positions 

of grid lines for each dimension:

● XLoc = {0.0, 1.5, 2.0, 5.0, …}

● YLoc = {-1.0, 0.3, 1.0, 2.0, …}

● ZLoc = {3.0, 3.5, 3.6, 4.1, …}

● Coordinate ➔ cell still quite simple



Sampled Data

● Curvilinear grids

● Vertex locations are explicitly given

● XYZLoc = {(0.0, -1.0, 3.0), (1.5, 0.3, 3.5), (2.0, 1.0, 3.6), …}

● Cells are quadrilaterals or cuboids

● Grid lines are not (necessarily) parallel to the axes

2D curvilinear grid
3D curvilinear grids



Transformation of a Curvilinear Grid



Sampled Data

● Curvilinear grids

● Coordinate ➔ cell:

● Local search within last cell or its immediate neighbors

● Global search via quadtree/octree

2D curvilinear grid

3D curvilinear grids



• dependent variable: 
array

• positions: implicit, no 
storage needed

uniform 
grid

• dependent variable: 
array

• positions: 2/3 location 
vectors

rectilinear 
grid

• dependent variable: 
array

• positions: array

curvilinear 
grid

Data structures for structured grids

Sampled Data



Sampled Data: Real-World Example

● Block-structured grids

● combination of several structured grids

DFG-funded SFB 557

Erik Wassen, TU Berlin, Germany 2008



Sampled Data: Real-World Example

● Demands on data storage, an example:

Ahmed body

Block-structured grid with 52 blocks

Each block is a curvilinear grid

17 million grid cells in total

Temporal resolution: a particle 

needs 10000 time steps from front 

to back of the Ahmed body DFG-funded SFB 557

Erik Wassen, TU Berlin, Germany 2008



Sampled Data: Real-World Example

● Demands on data storage, an example:

17 million grid cells

x 10000 time steps

x 7 variables

X 8 bytes per double

= 8.66 terra bytes

(60.62 TB for total 

70000 time steps)

➔ Do not save every time step, not every variable, and not every block.

DFG-funded SFB 557

Erik Wassen, TU Berlin, Germany 2008



Sampled Data

sample points are not laid out 

in a matrix-like fashion

unstructured grids connect 

neighboring samples

many possibilities how to do this

triangle/tetrahedral mesh

2D/3D linear cells

quad/hexahedral mesh

2D/3D cube-like cells

Unstructured Grids



Unstructured Grids: Triangle / Tetrahedral Meshes

Sampled Data

2D unstructured grid

consisting of triangles

3D unstructured grid

consisting of tetrahedra

(from TetGen user manual)



Sampled Data

Vertex locations and 

connectivity explicitly given

Coordinate ➔ cell:
• Local search within last cell or its 

immediate neighbors

• Global search via quadtree/octree

Unstructured Grids



Sampled Data

shared vertex data structure

vertex table

stores positions

triangle table

stores indices into vertices

gives “triangle soup”

from this we can derive:

list of edges

vertex neighbors

Data structures for Triangles Meshes



Sampled Data

many other options exist

Data structures for Triangles Meshes



Unstructured Grids: Quad Mesh

Sampled Data

2D unstructured grid consisting of quads

Source: https://www.sharcnet.ca/Software/Gambit/html/modeling_guide/mg0303.htm



Combination of different grid types

Hybrid Grids

Sampled Data

2D hybrid grid 



● Continuous objects are often the subject of study

● Need to be sampled to be represented in the computer

● Data is stored at samples (most often points)

● Structured grids: matrix-like organization of neighborhood

● uniform

● rectilinear

● curvilinear

● Unstructured grids: arbitrary organization of neighborhood

● triangle/tetrahedral meshes

● quad/hexahedral meshes

Summary

Sampled Data


