
An introduction to the Mandelbrot set

Bastian Fredriksson

January 2015

1 Purpose and content

The purpose of this paper is to introduce the reader to the very useful subject
of fractals. We will focus on the Mandelbrot set and the related Julia sets. I
will show some ways of visualising these sets and how to make a program that
renders them. Finally, I will explain a key exchange algorithm based on what
we have learnt.

2 Introduction

The Mandelbrot set and the Julia sets are sets of points in the complex plane.
Julia sets were first studied by the French mathematicians Pierre Fatou and
Gaston Julia in the early 20th century. However, at this point in time there were
no computers, and this made it practically impossible to study the structure of
the set more closely, since large amount of computational power was needed.

Their discoveries was left in the dark until 1961, when a Jewish-Polish math-
ematician named Benoit Mandelbrot began his research at IBM. His task was
to reduce the white noise that disturbed the transmission on telephony lines [3].
It seemed like the noise came in bursts, sometimes there were a lot of distur-
bance, and sometimes there was no disturbance at all. Also, if you examined a
period of time with a lot of noise-problems, you could still find periods without
noise [4]. Could it be possible to come up with a model that explains when
there is noise or not?

Mandelbrot took a quite radical approach to the problem at hand, and chose
to visualise the data. The results showed a structure with self-similarity at all
scales. This is called a fractal. There are many sorts of fractals, but what they
all have in common are that they show signs of self-similarity. That means, when
you zoom into the fractal, you will notice that some patterns repeat themselves.
The fractal first studied by Mandelbrot was indeed the fractal generated by
white noise from the telephony lines, also known as the Cantor dust fractal [3,6].

All fractals can be generated using an Iterated Function System (IFS). An
IFS consists of a function f which is executed in a feedback loop, also known
to computer students as a recursive function. That means, the output of the
function is given as input when the function calls itself. The first time the

1

function is called, you input some initial value f(0) [2]. The Cantor dust fractal
can be created using a black square as initial value. Each time you run the
IFS in a feedback loop you split each square into four smaller squares and put
them beside each other as shown in fig 1. If you repeat this process many times,

Figure 1: The Cantor dust fractal is generated by starting with a black square.
In each iteration you split the square into four parts, thus creating clusters of
”dust” which can be used to model white noise on telephony lines.

you will eventually end up with a large amount of uniformly distributed dots,
or ”Cantor dust”. The dots represents short periods of time where there is
disturbance on the line. The dust appears, as you can see, in clusters. These
clusters represents ”a burst” of noise, periods of time where there is a lot of
disturbance. The challenge for the engineers became to deal with these noise
clusters and correct any errors as fast as possible [4]. The example with Cantor
dust is just one example among many others, of phenomena in nature that can
be modeled using fractals. Many other things, like a the helix of a shell or the
surface of a broccoli prove to have fractal properties. There is even a theory
called Fractal Cosmology which states that the distribution of matter in the
universe can be modeled as a fractal.

3 The Mandelbrot set

Encouraged by his findings, Benoit Mandelbrot continued his research at IBM.
He began studying the work on Julia sets started by Pierre Fatou and Gaston
Julia. With high-powered computers at his disposal he plotted the sets on paper.
He noted that they were also fractals, with astonishing richness of detail. By
making a small change to the IFS used by Fatou and Julia he came up with
another fractal, which was later to be known as the Mandelbrot fractal or the
Mandelbrot set. Benoit Mandelbrot wrote down his findings in the book The
Fractal Geometry of Nature which was published in 1982 [3].

2

3.1 Definition

As I mentioned, the Mandelbrot set is a set of points in the complex plane.
The complex plane is a two-dimensional space with the a vertical imaginary
axis, and a horizontal real axis. A point in the plane can be described using
a complex number c ∈ C written on the form c = a + bi where a, b ∈ R and
i =
√
−1. If you let the points belonging to the Mandelbrot set to be coloured

in black, you obtain the shape depicted in figure 3.
Now we are ready to make a formal definition of the Mandelbrot set. A

point c ∈ C belong to the Mandelbrot set iff

lim
n→∞

||zn+1 = z2n + c||9∞ where z0 = 0

Here we have an IFS with the recursive formula zn+1 = zn + c and an
initial value of z0 = 0. In each loop, you square the previous number and seed
the result with the value of c. The vertical brackets denotes the Euclidean
norm, which is a measurement of how far away a point in the plane is from
origo, ||z|| =

√
a2 + b2. A point c belongs to the Mandelbrot set if it remains

bounded when we run the formula in a feedback loop. For example, the point
c = −1 + 0.25i belongs to the Mandelbrot set. If we apply the formula above,
we retrieve the number series z0 = 0, z1 = −1+0.25i, z2 = −0.0625−0.25i, z3 ≈
−0.059 + 0.281i, z4 ≈ 0.042 − 0.345i, z5 ≈ −1.118 + 0.221i and so on. It is not
obvious whether the point will eventually escape towards infinity or not, and it is
usually not possible to tell. This is the reason why, in practical implementations,
you run the feedback loop for a maximum number of times, say n times. If the
point still remains within a radius of 2 from origo you consider the point to
belong to the set. Why 2? Well, it is possible to show, and this an important
result, that if ||zn|| ≥ 2, zn will eventually escape towards infinity [7]. This is
called the bailout radius. When you zoom into the set, you will notice that you
will have to increase the size of n. This is why the rendering of fractals is such
a time-consuming task.

3.2 Julia sets

Julia sets and the Mandelbrot set are intrinsically connected through the fact
that they are created using the same formula. This can be utilised to perform a
cryptographic key exchange, see Application in cryptography. While the Man-
delbrot set is created using different values on c and an initial value of z0 = 0, a
Julia set is created using a fixed c as seed and different values on z. The com-
plex number c can be chosen freely [1]. If the point c chosen does not belong
to the Mandelbrot set, the resulting fractal will be a Cantor dust fractal. To
determine whether a point z belongs to the Julia set with seed c, iterate the
formula zn+1 = zn + c in the same manner as with the Mandelbrot set.

3

Figure 2: The Julia set generated from the seed c = −0.755262 + 0.094211i.

4 Exploring the set

The Cantor dust fractal is not very exciting because it looks almost the same
at all scales. The Mandelbrot fractal on the other hand is quite the opposite.
When you zoom into the set, you will notice that new patterns emerge. The
author has spent many hours zooming into the set, exploring new fascinating
structures.

The Mandelbrot set is actually a great example of how you can store an
infinite amount of information on a finite medium. The prerequisite for creating
an artistically appealing fractal lies in the existence of a colouring function c(x).
The purpose of the colouring function is often to colour the points which lies
outside the set. This is called the aura of the Mandelbrot set. It is also possible
to colour the set itself, although it is usually coloured in a fixed colour like black.
In this section we will go through some methods of colouring and see what the
result looks like.

4.1 The escape time algorithm

The most common algorithm for colouring the aura of the set is called the
escape time algorithm. The escape time algorithm is based on the value of n,
that means, the number of iterations before zn end up outside the bailout radius.
A simple, yet beautiful way of colouring, is to colour the actual set in black and
then fade the aura from red to black. One way of defining the colouring function

4

Figure 3: The aura of the set
coloured using the traditional es-
cape time algorithm. The black
bulb in the middle is the actual
Mandelbrot set.

Figure 4: The aura coloured by
measuring the distance from origo
and scaling it with a constant.

Figure 5: Part of the Mandelbrot
set coloured with a palette.

Figure 6: A Mandelbrot spiral
coloured using cosine.

would then be:

c(n) =

{
0 n = max(n)

255− n/max(n) + 1 n < max(n)

c(n) returns the red component of a RGB-colour. If you want be able to
colour your fractal in many different colours, it is often convenient to use three
functions, cr(x), cg(x) and cb(x) where cr returns the red component, cg returns
the green component and cb returns the blue component. Another approach is
to prepare a colour palette, and then let the function c(x) point out a colour in
the palette. In this way, you can create e.g. rainbow effects.

4.2 Buddhabrot

Another variant of the Mandelbrot set is the Buddhabrot. The name arises
from the fact that the fractal looks like a meditating Buddha. An image of a
Buddhabrot was first posted by Melinda Green on Usenet in 1993 [8]. At first
glance it does not look like a Mandelbrot at all, but it is only the colouring that

5

Figure 7: A Buddhabrot generated with n = 106 [5]
.

differs. Instead of counting the number of iterations required, like in the escape
time algorithm, you count the number of times a specific point has been visited.
The fractal is rendered by splitting the canvas into a matrix M , where each
element in the matrix represents the number of times this area of the fractal
has been visited. For each output from the function zn you increment the
number on the corresponding position in the matrix. Once you have executed
zn for all possible c you make a second pass over M. Here you can use a colouring
function c(x) similar to what we described in section 3.1 to map the elements
in M to colours.

6

5 Implementation

This section contains sample code written in C# to get you started rendering
your own fractals. Begin by creating a canvas with a size of n×m pixels. Each
pixel represents a unique c. Transform the position of the pixel on screen to
a complex number in the plane. Given that the coordinates of the complex
number can be written as (x, y) and the plane has the following boundaries;
xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax, the transformation functions could
look something like this:

double t r an s x (double x , double x min , double x max) {
return x / (m / (x max − x min)) + x min ;

}

double t r an s y (double y , double x min , double x max) {
return y max − y / (n / (y max − y min)) ;

}

Now, for each pixel in your canvas, iterate the formula zn+1 = zn + c until zn
falls outside the bailout radius or until n = max(n). Depending on how you
want to colour your fractal you might either store the counter n or some other
information you need to remember. In the example below, a complex number is
represented using two doubles, where re is the real part and im is the coefficient
for the imaginary part.

for (int y = 0 ; y < n ; y++) {
for (int x = 0 ; x < m; x++) {

double re = 0 ; // z {n+1}
double im = 0 ;
double r e o l d = 0 ; // z {n}
double im old = 0 ;
double a = t rans x (x , x min , x max) ;
double b = trans y (y , y min , y max) ;
int n ;
for (n = 0 ; Math .Pow(re , 2) +

Math .Pow(im , 2) < 4 && n < N MAX; n++) {
// z {n+1}=z {n}ˆ2+c
r e o l d = Math .Pow(re , 2) − Math .Pow(im , 2) ;
im old = 2 .0 ∗ re ∗ im ;
re = a + r e o l d ;
im = b + im old ;

}
c o l o u r p i x e l (x , y , n) ;

}
}

7

5.1 Optimisations

You might have noticed that we have done the transformation

||z|| =
√

x2 + y2 → ||z||2 = x2 + y2

to avoid the time consuming square root function. Other optimisations you can
do is to split the canvas into say, blocks of n/10 ×m/10 pixels, and calculate
each block in its own thread. This should speed up calculations a lot, since you
exploit all cores in the CPU. You can also use a technique called periodicity
checking. Each number series given by calculating zn for different n can be seen
as an orbit. If there is a cycle in the orbit, then we know that zn cannot diverge
when n→∞, hence the point must be a part of the Mandelbrot set. However,
cycle checking with floating point arithmetic is difficult and if you do not get
it right, you might end up with a program running even slower, so I would not
recommend this kind of optimisation unless you really need speed [9]. You can
also decrease the bailout radius, but be careful, the results can be inaccurate.
Another thing you could try is to do the calculations on your graphics card.
Fractals should be suitable for graphic cards, since they are better at floating
point arithmetic’s, and since it is easy to split computations into smaller pieces.

Figure 8: The Windows program Mandelbrot made by the author. If you do
not want to make your own program, you can try XaoS or Fractal eXtreme.

8

6 Application in cryptography

Fractals is not only about beautiful images and computer graphics. The chaotic
nature of fractals have made them suitable for cryptographic applications such
as hash functions and encryption. In this section, we will go through a key
exchange protocol based on the Mandelbrot set.

6.1 Fractal key exchange

In cryptography, a key exchange is the process of two parties, Alice and Bob,
exchanging keys with each other allowing the use of a cryptographic algorithm.
This is done through a key exchange protocol such as Diffie-Hellman. Diffie-
Hellman has an important property; even if Eve is eavesdropping on the traffic
sent between Alice and Bob, she cannot deduct the common secret. This is what
makes Diffie-Hellman secure. Computer security researchers Mohammad Ah-
mad Alia and Azman Bin Samsudin at University Sains Malaysia have invented
a new type of key exchange protocol which utilises floating point arithmetics [1].
The protocol is very similar to Diffie-Hellman, and relies on the following equiv-
alence relation:

cn−xqne = ck−xqkd ∀x ∈ Z where c, d, e ∈ C and n, k ∈ N

Where qi ∈ C is the result from running q in a feedback loop i times. pa and pb
as defined below are the public keys for Alice and Bob respectively.

1. The proposed protocol begins with Alice and Bob agreeing on a complex
number c which belongs to the Mandelbrot set and an integer x. c and x
are public and can be intercepted by a third party without compromising
the protocol.

2. Alice generates her secret key consisting of the tuple (n, e) where n > x
and e belongs to the Mandelbrot set.

3. Bob generates his set key consisting of the tuple (k, d) where k > x and d
belongs to the Mandelbrot set.

4. Alice calculates zn by iterating the formula zi+1 = zic
2e, z0 = c (1) n

times and sends pa = zne to Bob.

5. Bob calculates zk by iterating the formula zi+1 = zic
2d, z0 = c (1) k times

and sends pb = zkd to Alice.

6. Alice calculates the common secret cn−xqne by iterating the formula qi+1 =
qice, q0 = pb (2) n times.

7. Bob calculates the common secret ck−xqkd by iterating the formula qi+1 =
qicd, q0 = pa (2) k times.

9

The function (1) is called Mandelfn and the function (2) is called Juliafn because
they bore a slight resemblance to the original Mandelbrot and Julia functions.

The keyspace, given a key with length n, is larger for the fractal key ex-
change algorithm than the keyspace for Diffie-Hellman, because the keyspace of
Diffie-Hellman is limited to the number of primes in the field Zp where p is the
largest prime that can be represented by 2n bits. However, using the fractal
key exchange algorithm we can potentially end up with any key, which means
that the keyspace is exactly 2n. The fractal approach also has an interesting
property. The values of n and k can be seen as a load factor that will slow down
the calculations and increase the security of the protocol.

Figure 9: The common secret plotted in the complex plane.

6.2 An example

1. We choose c = −0.6 + 0.12i and x = 1.

2. We let Alice’s private key consist of n = 2 and e = −0.1 + 0.72i.

3. We let Bob’s private key consist of k = 3 and d = 0.21− 0.35i.

4. z1 = c3e
z2 = c5e2

We send pa = c5e3 to Bob.

5. z1 = c3d
z2 = c5d2

z3 = c7d3

We send pb = c7d4 to Alice.

6. q1 = c8d4e
q2 = c9d4e2

The common secret becomes:
cq3e = c10d4e3 ≈ 0.0000443966− 0.0000646526i.

10

7. q1 = c6e3d
q2 = c7e3d2

q3 = c8e3d3

The common secret becomes:
c2q3d = c10e3d4 ≈ 0.0000443966− 0.0000646526i.

7 Conclusion

I hope the reader has gained some insight about the Mandelbrot set. As shown
in the paper, it has several practical applications, not only in computer graphics.
The fractal is like pi, it shows up even when you least expect it to. This paper
is, as the title suggests, only an introduction to the Mandelbrot set and fractals
in general. There are many other cool things you can do with fractals. One
example of a recent discovery in the field of fractals was made by Tom Lowe in
2010 when he discovered the 3-dimensional Mandelbox. Although it has never
reached any commercial success, studies has shown that fractals are suitable for
image compression. If you are interested in the subject, you might take a look in
References. You can also try to enhance the key exchange algorithm described
in section 5.

11

References

[1] Alia, M. A., and Samsudin, A. B. New Key Exchange Protocol Based
on Mandelbrot and Julia Fractal Sets. International Journal of Computer
Science and Network Security, IJCSNS 7, 2 (February 2007).

[2] Fisher, Y., Ed. Fractal Image Compression: Theory and Application.
Springer-Verlag, London, UK, UK, 1995.

[3] IBM. Icons of progress - Fractal geometry, 2015. [Online; accessed 2015-01-
21].

[4] Pritchard, J. The Chaos Cookbook: A Practical Programming Guide.
Elsevier Science, 2014.

[5] UnreifeKirsche. Buddhabrot.

[6] Weisstein, E. W. Cantor dust. From MathWorld—A Wolfram Web Re-
source.

[7] Weisstein, E. W. The Mandelbrot set. From MathWorld—A Wolfram
Web Resource.

[8] Wikipedia. Buddhabrot —Wikipedia, The Free Encyclopedia, 2015. [On-
line; accessed 2015-01-23].

[9] XaoS Development Team. Periodicity checking – XaOS v4.0 documen-
tation, 2015. [Online; accessed 2015-01-23].

Bastian Fredriksson began his studies at The Royal University of Technology in
2012. He is currently studying his third year on the Bachelor’s Programme in
Computer Science.

12

