Course plan and reading suggestions

This course has two modules:

Module I: Fourier series

Module II: Fourier transform.

Due to COVID-19 all lecture for P1 will be online using zoom. The zoom link is https://kth-se.zoom.us/j/66304938297 Links to an external site.

The lectures for P2 will be on campus but in hybrid mode, so you will be able to follow the lecture online using the above zoom link.!

Date and Place Location Topic Reading suggestions Notes

Module I

 

(The notes are not proofread nor prepared in advance. These are writings during the lectures and may contain errors. Always check the book in case of confusion)

Lecture 1

Tuesday 31/8

Time: 15-17

 

Introduction.

Diagonalizing the second derivative

Unit Circle S^1 as a group. Characters. 

 

4.1

4.2

1.3

Note 31 Aug 2021.pdf Download Note 31 Aug 2021.pdf 

Lecture 2

Tuesday 7/9

Time: 15-17

 

Fourier series of continuous and smooth functions. Fejer and Dirichlet kernels

1.4

Note 7 Sep 2021.pdf Download Note 7 Sep 2021.pdf 

Lecture 3

Friday 10/9

Time: 13-15

 

L^2(S^1) as a Hilbert space. 

Properties of Fourier series in L^2(S^1)

1.2

1.3

Note 10 Sep 2021.pdf Download Note 10 Sep 2021.pdf 

Lecture 4

Tuesday 14/9

Time: 15-17

 

Properties of Fourier series in L^2(S^1)

 

1.4 Note 14 Sep 2021.pdf Download Note 14 Sep 2021.pdf 

Lecture 5

Tuesday 21/9

Time: 15-17

 

Fourierseries of L^1(S^1) functions. Convolution and Fourier series

1.5

Note 21 Sep 2021.pdf Download Note 21 Sep 2021.pdf

An overview of convergence results:

Note 21 Sep 2021 (2).pdf Download Note 21 Sep 2021 (2).pdf  

Lecture 6

Tuesday 28/9

Time: 15-17

 

Application: isoperimetrical inequality. Polynomial approximation.  1.7 Note 28 Sep 2021 (2).pdf Download Note 28 Sep 2021 (2).pdf 

Lecture 7

Tuesday 5/10

Time: 15-17

 

One-dimensional heat equation.

1.8 Note 5 Oct 2021.pdf Download Note 5 Oct 2021.pdf 

Lecture 8

Tuesday 19/10

(change in schedule!)

Time: 15-17

 

Fourierseries with several variables. Random walks in d dimensions

 1.10 Note 19 Oct 2021.pdf Download Note 19 Oct 2021.pdf 
Module II  (PRELIMINARY)

Lecture 9

 

Tuesday 2/11

Time: 10-12

 

 

E52

Fourier integrals on Schwartz space 2.2 Note 2 Nov 2021.pdf Download Note 2 Nov 2021.pdf 

Lecture 10 

Friday

5/10

Time: 13-15

E31

Fourier transform on L2(R), Plancherel theorem, Hermite functions.   2.3, 2.5 Note 5 Nov 2021.pdf Download Note 5 Nov 2021.pdf 

Lecture 11

Tuesday 9/11

Time: 10-12

E35

Fourier integrals on L1(R), Riemann-Lebesque lemma.

2.6

 

 

Note 9 Nov 2021.pdf Download Note 9 Nov 2021.pdf 

Lecture 12

Tuesday 16/11

Time: 10-12

E53

Applications: ODE, heat equation.

Heisenberg inequality

2.7, 2.8

Note 16 Nov 2021.pdf Download Note 16 Nov 2021.pdf 

Lecture 13

Tuesday 23/11

Time: 10-12

E53

Poisson summation formula, Jacobi theta identity Minkowski's Theorem.

 

2.11

Note 23 Nov 2021.pdf Download Note 23 Nov 2021.pdf 

Lecture 14

Tuesday 30/11

Time: 10-12

Q26

 Bessel transform, Wave equation in dimension 2 and 3. 

Recap of  complex function theory

2.10, 2.11

3.1

Note 30 Nov 2021.pdf Download Note 30 Nov 2021.pdf 

Lecutre 15

Tuesday 7/12

Time: 10-12

E53

Complex function theory, Phragmen-Lindelöf, Hardy's theorem,

 

3.1

3.2

Note 7 Dec 2021.pdf Download Note 7 Dec 2021.pdf 

Lecture 16

Friday 12/11

Time: 10-12

D34

Paley Wiener space.

Airy equation (extra material)

3.3 Note 10 Dec 2021-1.pdf Download Note 10 Dec 2021-1.pdf

Examination

 

 

12/01

13/01

14/01

 

Oral exam